9 резултати
The accumulation of the mRNA corresponding to the gene coding for a hydroxyproline-rich glycoprotein has been studies in rice. The patterns of gene expression obtained are similar to those observed in maize in regions rich in dividing cells such as the meristematic zones of roots. However, the gene
A monoclonal antibody, LM1, has been derived that has a high affinity for an epitope of hydroxyproline-rich glycoproteins (HRGPs). In suspension-cultured rice (Oryza sativa L.) cells the epitope is carried by three major proteins with different biochemical properties. The most abundant is the 95-kDa
Arabinogalactan proteins (AGPs) comprise a family of hydroxyproline-rich glycoproteins that are implicated in plant growth and development. In this study, 69 AGPs are identified from the rice genome, including 13 classical AGPs, 15 arabinogalactan (AG) peptides, three non-classical AGPs, three early
Extensins (EXTs) are a family of plant cell wall hydroxyproline-rich glycoproteins (HRGPs) that are implicated to play important roles in plant growth, development, and defense. Structurally, EXTs are characterized by the repeated occurrence of serine (Ser) followed by three to five prolines (Pro)
In the root of rice (Oryza sativa), abscisic acid (ABA) treatment, salinity, or water deficit stress induces the expression of a family of four genes, REPETITIVE PROLINE-RICH PROTEIN (RePRP). These genes encode two subclasses of novel proline-rich glycoproteins with highly repetitive PX₁PX₂ motifs,
The cell wall composition of internodes of deep-water rice plants (Oryza sativa L. cv Habiganj Aman II) which were induced to grow rapidly by submergence in water was compared to that of nonsubmerged plants which grew slowly. No differences could be detected in cellulose, uronic acid, and lignin
The combinatorial interaction of a receptor kinase and a modified CLE peptide is involved in several developmental processes in plants, including autoregulation of nodulation (AON), which allows legumes to limit the number of root nodules formed based on available nitrogen and previous rhizobial
Arabinogalactan proteins (AGPs) are hyperglycosylated members of the hydroxyproline-rich glycoprotein (HRGP) superfamily and are widely distributed throughout the plant kingdom. In Oryza sativa (rice), the gene expression and biological function of AGPs only have received minimal research attention.