10 резултати
Hypoxia plays an extensive role in the development of the tumor microenvironment (TME), particularly in mediating immunosuppression. Respiratory hyperoxia therapy has the potential to improve the effects of conventional cancer therapies via molecular mechanisms mediating antitumor immunity. Here, we
Sirtuin 3 (Sirt3) has a promising role in cancer tumourigenesis and treatment, but there have been controversies about its role as oncogene or tumour suppressor in different types of cancer. Changes in its expression are associated with the excessive production of reactive oxygen species (ROS), thus
Perioperative factors promoting cancer recurrence and metastasis are under scrutiny. While oxygen toxicity is documented in several acute circumstances, its implication in tumor evolution is poorly understood. We investigated hyperoxia long-term effects on cancer progression and some underlying
Aims: Since the role of the major mitochondrial NAD+-dependent deacetylase, sirtuin 3 (Sirt3), is differential in cancer, opposite to the well-known tumor-suppressing effect of hyperoxia, this study aimed to investigate the role of Sirt3 in
Recent evidence supports the concept that Adriamycin cytotoxicity may be mediated by drug semiquinone free radical and oxyradical generation. We tested this hypothesis further by exposing drug-sensitive (WT) and 500-fold Adriamycin-resistant MCF-7 human breast tumor cells (ADRR) to exogenous
OBJECTIVE
Hypoxia is commonly observed in regions of primary tumors and metastases, and is associated with resistance to treatment, more aggressive tumor phenotypes and poor prognosis. Reliable and validated imaging biomarkers of hypoxia are needed for pre-clinical studies and clinical use.
BACKGROUND
Tumor hypoxia is relevant for tumor growth, metabolism, resistance to chemotherapy and metastasis. We have previously shown that hyperoxia, using hyperbaric oxygen treatment (HBOT), attenuates tumor growth and shifts the phenotype from mesenchymal to epithelial (MET) in the DMBA-induced
Reactive oxygen species (ROS) are involved in a number of disease states where they are believed to be responsible for cellular damage. In this study we examined the effect of ROS generation on polyamine catabolism. Treatment of human breast cancer cells with either H2O2 or hyperoxia increased the
BACKGROUND
The tumor microenvironment is pivotal in tumor progression. Thus, we aimed to develop a mammary tumor model to elucidate molecular characteristics in the stroma versus the tumor cell compartment by global gene expression. Secondly, since tumor hypoxia influences several aspects of tumor
Antitumor T cells either avoid or are inhibited in hypoxic and extracellular adenosine-rich tumor microenvironments (TMEs) by A2A adenosine receptors. This may limit further advances in cancer immunotherapy. There is a need for readily available and safe treatments that weaken the