8 резултати
Icariin (ICA) has neuroprotection in oxygen-glucose deprivation (OGD) neurons by increasing Sirtuin1 (SIRT1). However, little is known about the role of ICA on stroke. SIRT1 is a class III histone deacetylase and activates peroxisome proliferator-activated receptor gamma coactivator-1alpha
Post-stroke dementia (PSD) is a common clinical disease and the central cholinergic circuits are important to cognitive function. Icariin (ICA), a flavonoid isolated from Herba Epimedii, was reported to improve cognitive function through modulating the cholinergic system. But there were no studies
Previous studies suggest that flavonol icariin protects against neuron injury after oxygen and glucose deprivation by increasing SIRT1. This study demonstrates that icariin can inhibit H(2) O(2) -induced neurotoxicity. The neuroprotection of icariin enhances the antioxidant capacity through both a
Epimedii Herba (EH) has been used in traditional Asian medicine to treat hemiplegia following stroke. Icariin, its major active component, is used as a quality-control marker and for its various pharmacological effects. We hypothesized that icariin would show protective effects following traumatic
Cerebrovascular smooth muscle cells (SMCs) hyperplasia is an important contributor to cerebrovascular remodeling during hypertension. The aim of present study was to investigate the effects of Icariin on cerebrovascular SMCs proliferation and remodeling and the underlying mechanisms. The results
Icariin (ICA), an active flavonoid extracted from Chinese medicinal herb Epimedii, has been reported to exhibit many pharmacological effects including alleviating brain injury. However, little is known about the protection of ICA on ischemic stroke. Hence, this study was designed to investigate the
Mesenchymal stem cells (MSCs) are one promising candidate for regenerative therapy of ischaemic stroke through transdifferetiation and paracrine actions. Icariin (ICA) has shown great potential in improving cell activity and VEGF, BDNF secretion in vitro. Whether they will synergistically improve
Icariside II (IRS) is a metabolite of icariin, which is derived from Herba Epimedii. Although the potential therapeutic effects of icariin on ischemic brain injury were well-investigated; the role of IRS in ischemic stroke is still not addressed clearly. Therefore, the current study aimed to