Страница 1 од 20 резултати
The first committed steps in the biosynthesis of the two cyanogenic glucosides linamarin and lotaustralin in cassava are the conversion of L-valine and L-isoleucine, respectively, to the corresponding oximes. Two full-length cDNA clones that encode cytochromes P-450 catalyzing these reactions have
Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic
Cassava (Manihot esculenta Crantz) is a plant widely used for food consumption in different processed products in rural areas of Africa, Asia, and Latin America. Cassava is a good source of carbohydrates and micronutrients. However, if it is not adequately processed or the consumer has nutritional
Cassava (Manihot esculenta Crantz) is a tropical plant that is used as fresh food, processed food, or raw material for the preparation of flours with high nutritional value. However, cassava contains cyanogenic glycosides, such as linamarin and lotaustralin, that can trigger severe toxic effects and
Cassava (Manihot esculenta Crantz) is an important tropical root crop providing energy to about 500 million people. The presence of the two cyanogenic glycosides, linamarin and lotaustralin, in cassava is a major factor limiting its use as food or feed. Traditional processing techniques practiced in
A microsomal system catalyzing the in vitro synthesis of the aglycones of the two cyanogenic glucosides linamarin and lotaustralin has been isolated from young etiolated seedlings of cassava (Manihot esculenta Crantz). A prerequisite to obtain active preparations is the complete removal of the
Objectives
Cassava (
Manihot esculenta Crantz) contains cyanogenic glycosides (linamarin and
lotaustralin) that have been associated with neurological disorders in humans and rats. In basal ganglia, the dopaminergic neurons of substantia nigra
pars compacta (SNpc)
Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from l-valine and l-isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been
Lotus japonicus was shown to contain the two nitrile glucosides rhodiocyanoside A and rhodiocyanoside D as well as the cyanogenic glucosides linamarin and lotaustralin. The content of cyanogenic and nitrile glucosides in L. japonicus depends on plant developmental stage and tissue. The cyanide
In addition to lotaustralin and linamarin, a novel cyanogenic glycoside, 2-((6-O-(beta-D-apiofuranosyl)-beta-D-glucopyranosyl)oxy)-2-met hylbutanenitrile , two novel non-cyanogenic glycosides, (2S)-((6-O-(beta-D-apiofuranosyl)-beta-D- glucopyranosyl)oxy)butane and
Toxicity of cassava arises due to the presence of the cyanoglucosides linamarin and lotaustralin which are hydrolysed by endogenous enzyme linamarase to acetonecyanohydrin (ACN) and cyanide (CN) which are toxic. Major research efforts to eliminate/reduce cyanoglucosides have focused on (i)
Transgenic cassava (Manihot esculenta Crantz, cv MCol22) plants with a 92% reduction in cyanogenic glucoside content in tubers and acyanogenic (<1% of wild type) leaves were obtained by RNA interference to block expression of CYP79D1 and CYP79D2, the two paralogous genes encoding the first committed
Cyanogenesis is an enzyme-promoted cleavage of β-cyanoglucosides; the release of hydrogen cyanide is believed to produce food poisoning by consumption of certain crops as Cassava (Manihot esculenta Crantz). The production of hydrogen cyanide by some disruption of the plant wall is related to the
Mass spectrometry based imaging is a powerful tool to investigate the spatial distribution of a broad range of metabolites across a variety of sample types. The recent developments in instrumentation and computing capabilities have increased the mass range, sensitivity and resolution and rendered
BACKGROUND
Cassava, also known as yuca or manioc (Manihot esculenta Crantz), is a staple food in tropical and subtropical regions since it is an important source of carbohydrates. Nevertheless, it contains cyanogenic compounds including lotaustralin and linamarin, which have been shown by