Страница 1 од 202 резултати
Pectins, complex plant-derived polysaccharides, are novel candidates for biomaterial nanocoatings. Pectic rhamnogalacturonan-I regions (RG-I) can be enzymatically treated to so-called modified hairy regions (MHR). We surveyed the growth and differentiation of murine preosteoblastic MC3T3-E1 cells on
Pectin methylesterase was extracted from potato tubers and partially purified in a single chromatographic step at large industrial scale. The preparation obtained in this way matched the temperature and pH profile of the species reported earlier by Puri et al. (Food Chemistry 8:203-213, 1982) and
Potato tuber pectin is rich in galactan (oligomer of beta-1,4-linked galactosyl residues). We have expressed a fungal endo-galactanase cDNA in potato under control of the granule bound starch synthase promoter to obtain expression of the enzyme in tubers during growth. The transgenic plants
Potato pectin contains some proteinaceous components and exhibits emulsifying and emulsion stabilizing abilities. The objective of this study was to elucidate the effect of the pectin moiety of the pectin-protein conjugate present in pectic extracts from potato tubers on their interfacial
Genes encoding pectic enzymes were introduced to wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14 mutant) or rhamnogalacturonan lyase (RGL-18 mutant). After sequential extraction, β-Gal-14 hot buffer-soluble solids
Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on
The crispness of fruits and vegetables is dependent, predominantly, on the maintenance of cell adhesion. There is a growing body of evidence to suggest that cell adhesion in plants is controlled at the edge of cell faces rather than across the entire cell surface. The aim of the current study has
The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell-wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the
Background: Sweet potato (Ipomoea batatas. L) is the sixth most important food crop in the world, and China is the largest producer. Large amounts of sweet potato residues during the starch extraction are generated, leading to environmental pollution and resources
We report the generation of Solanum tuberosum transformants expressing Cicer arietinum betaIII-Gal. betaIII-Gal is a beta-galactosidase able to degrade cell wall pectins during cell wall loosening that occurs prior to cell elongation. cDNA corresponding to the gene encoding this protein was
Two pectin methyl esterases (PMEs; EC 3.1.1.11) from Solanum tuberosum were isolated and their expression characterised. One partial clone ( pest1) was expressed in leaves and fruit tissue, while pest2 was a functional full-length clone and was expressed ubiquitously, with a preference for aerial
Commercial pectin (with a 94% degree of esterification, DE94) suspended in methanol was reacted with methanolic alkaline hydroxylamine at room temperature for 20 h to prepare pectin hydroxamic acids (PHAs). The prepared PHA was coupled to the epoxy-activated Sepharose 6B gel to get immobilized PHA
Pectin is a natural polysaccharide that has been used widely as stabilizer in food emulsion system.This study aimed to optimize the yield of pectin extracted from sweet potato residue and investigate its emulsifying A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue
Transgenic potato (Solanum tuberosum L.) plants were constructed with a Petunia inflata-derived cDNA encoding a pectin methyl esterase (PME; EC 3.1.1.11) in sense orientation under the control of the cauliflower mosaic virus 35S promoter. The PME activity was elevated in leaves and tubers of the