Страница 1 од 24 резултати
Dietary phytic acid is a major causative factor for low Zn bioavailability in many cereal- and legume-based diets. The bioavailability of Zn in seed of low phytic acid (lpa) variants of maize ( Zea mays L.), rice ( Oryza sativa L.), and barley ( Hordeum vulgare L.) was evaluated using a suckling rat
Maize is the third important major food crop. Breeding for low phytate maize genotypes is an effective strategy for decreasing the content of kernel phytic acid (a chelator of cations such as Ca(2+) and Fe(3+) ) and thereby increasing the bioavailability of nutritive minerals in human diet and
In the present study, the effects of different irrigation levels (I50: 50%; I75: 75%; and I100: 100% of depleted water from field capacity) and nitrogen fertilizer concentrations (N1:100, N2:200 and N3:300 kg ha-1N) on starch properties (total, resistant and nonresistant starch,
Phytic acid is a ubiquitous compound that chelates the micronutrients in food and hinder their absorption. Hence, breeding for low phytate content for producing stable low phytic acid (lpa) hybrids is essential. Phytic acid content in maize grains has been found to vary across environments
A maize mutant defective in the synthesis of phytic acid during seed maturation was used as a tool to study the consequences of the lack of this important reserve substance on seed survival. Data on germinability, free iron level, free radical relative abundance, protein carbonylation level, damage
The objective of this study was to determine the effects of phytic acid on free radical generation in vitro and in growing rats. Electron spin resonance spectroscopy studies using 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap indicate a complete inhibition of hydroxyl radical formation via
Reduced phytic acid content in seeds is a desired goal for genetic improvement in several crops. Low-phytic acid mutants have been used in genetic breeding, but it is not known what genes are responsible for the low-phytic acid phenotype. Using a reverse genetics approach, we found that the maize
Most of the phosphorus (P) in maize (Zea mays L.) kernels is in the form of phytic acid. A low phytic acid (lpa) maize mutant, lpa1-1, displays levels reduced by 66%. A goal of genetic breeding is development of low phytic acid feedstocks to improve P nutrition of nonruminant animals and reduce the
BACKGROUND
Phytic acid reduction in cereal grains has been accomplished with plant genetic techniques. These low-phytic acid grains provide a strategy for improving the mineral (eg, zinc) status in populations that are dependent on grains, including maize (Zea mays L.), as major dietary
Phytic acid (myo-inositol-1, 2, 3, 4, 5, 6-hexakisphosphate or Ins P(6)) typically represents approximately 75% to 80% of maize (Zea mays) seed total P. Here we describe the origin, inheritance, and seed phenotype of two non-lethal maize low phytic acid mutants, lpa1-1 and lpa2-1. The loci map to
Acid phosphatase activity (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) increased during the first 24 h of maize (Zea mays) seed germination. The enzyme displayed a pH optimum of 4.5-5.5. Catalytic activity in vitro displayed a linear time course (60 min) and reached its half maximum
The composition of glyphosate-tolerant (Roundup Ready) corn event NK603 was compared with that of conventional corn grown in the United States in 1998 and in the European Union in 1999 to assess compositional equivalence. Grain and forage samples were collected from both replicated and nonreplicated
We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic
The effect of reducing the phytate in soy-protein isolates on nonheme-iron absorption was examined in 32 human subjects. Iron absorption was measured by using an extrinsic radioiron label in liquid-formula meals containing hydrolyzed corn starch, corn oil, and either egg white or one of a series of
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase, an enzyme encoded by the gene IPK1, catalyzes the terminal step in the phytic acid biosynthetic pathway. We report here the isolation and characterization of IPK1 cDNA and genomic clones from maize (Zea mays). DNA Southern-blot analysis revealed that