Страница 1 од 325 резултати
To get some insight into the regulatory mechanisms controlling the sterol branch of the mevalonate pathway, tobacco (Nicotiana tabacum cv Bright Yellow-2) cell suspensions were treated with squalestatin-1 and terbinafine, two specific inhibitors of squalene synthase (SQS) and squalene epoxidase,
Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants
In wild-type Nicotiana plumbaginifolia Viv. and other higher plants, nitrate reductase (NR) is regulated at the post-translational level and is rapidly inactivated in response to, for example, a light-to-dark transition. This inactivation is caused by phosphorylation of a conserved regulatory serine
Transgenic tobacco (Nicotiana tabacum L. cv SR1) with decreased activity of glutathione reductase exhibited enhanced sensitivity to paraquat in the light as evaluated by chlorophyll destruction and electrolyte leakage from leaf discs. This result indicates the involvement of glutathione reductase in
In order to study the effect of repression of 14-3-3 genes on actual activity of the nitrate reductase (NR) in Nicotiana benthamiana leaves, Nb14-3-3a gene was silenced by virus-induced gene silencing (VIGS) method using potato virus X (PVX). Expression of Nb14-3-3a as well as Nb14-3-3b genes was
When tobacco is provided with a high nitrate supply, only a small amount of the nitrate taken up by the roots is immediately assimilated inside the roots, while the majority is transported to the leaves where it is reduced to ammonium. To elucidate the importance of root nitrate assimilation,
Expression in transgenic tobacco (Nicotiana tabacum L.) of a pea (Pisum sativum L.) GOR2 cDNA, encoding an isoform of glutathione reductase (GOR2), resulted in a 3- to 7-fold elevation of total foliar glutathione reductase (GR) activity. The enzyme encoded by GOR2 was confirmed to be extraplastidial
Mutant cell lines lacking nitrate reductase activity were analyzed genetically. Protoplasts from one apoprotein defective (nia) and four cofactor defective (cnx) mutants were fused in all possible pairwise combinations with the aid of polyethylene glycol. Complementing hybrids were detected by their
Using a novel system for expressing ipt gene from Agrobacterium tumefaciens in tobacco (Nicotiana tabacum L., cv. Petit Havana SR1), we were able to grow seedlings and teratoma-like tissue with increased content of cytokinins. This material enabled us to investigate new regulatory aspects of nitrate
Chloroplast glutathione reductase (GR) plays an important role in protecting photosynthesis against oxidative stress. We used transgenic tobacco (Nicotiana tabacum) plants with severely decreased GR activities by using a gene encoding tobacco chloroplast GR for the RNAi construct to investigate the
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used
Terpenoids are the most diverse natural products with many industrial applications and are all synthesized from simple precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized by two distinct metabolic pathways - cytosolic mevalonate
It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611-621). The
Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR(-)nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant
Tobacco (Nicotiana tabacum L.) plants were used to study connections between deficiency in boron and nitrate reduction. Boron deficiency caused a substantial decrease in shoot and, particularly, root weights that resulted in a notably high shoot/root ratio in comparison to boron-sufficient plants.