15 резултати
OBJECTIVE
Tendinopathies are pathological conditions of tissue remodelling occurring in the major tendons of the body, accompanied by excessive nociceptive signalling. Tendinopathies have been shown to exhibit an increase in the number of mast cells, which are capable of releasing histamine,
Toxic tendinopathy is a rare but reproducible complication in humans, given agents of four drug classes: aromatase inhibitors, fluoroquinolone antibiotics, glucocorticoids (long-term regimens), and statins. Toxic tendinopathy in humans has been linked less consistently to treatment with anabolic
A multitude of rheumatologic manifestations have been associated with HIV infection and protease inhibitors use. We describe two cases that display a temporal relationship between initiating Kaletra and developing Achilles tendinopathy. Immediate and dramatic resolution of symptoms occurred on
While overuse of the supraspinatus tendon is a leading factor in rotator cuff injury, the underlying biochemical changes have not been fully elucidated. In this study, torn human rotator cuff (supraspinatus) tendon tissue was analyzed for the presence of active cathepsin proteases with multiplex
Matrix metalloproteinases (MMP) are involved in the development of tendinopathy. These potent enzymes completely degrade all components of the connective tissue, modify the extracellular matrix (ECM), and mediate the development of painful tendinopathy. To control the local activity of activated
Several cases are reported of rheumatological pathology (temporomandibular dysfunction, frozen shoulder, Dupuytren's disease, and tendinitis) most probably related to the intake of indinavir in HIV positive patients. A survey using an anonymous questionnaire of 878 people with HIV infection treated
BACKGROUND
Although there has been a recent increase in interest regarding injectable therapy for noninsertional Achilles tendinosis, there are currently no clear treatment guidelines for managing patients with this condition. The objective of this study was (1) to conduct a systematic review of
Tendon response to mechanical loading results in either homeostasis, improvement, or degeneration of tissue condition. In an effort to better understand the development of tendinopathies, this study investigated the mechanical and structural responses of tendons subjected to under- and
Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been
OBJECTIVE
The purpose of this report is to describe epidemiological aspects of rheumatic disorders observed in HIV-infected patients undergoing highly active antiretroviral therapy (HAART). Patients and methods. This cross-sectional study was conducted from January 1 to June 30, 2008 in the HIV unit
Although the molecular mechanisms behind tendon disease remain obscure, aberrant stromal matrix turnover and tissue hypervascularity are known hallmarks of advanced tendinopathy. We harness a tendon explant model to unwind complex cross-talk between the stromal and vascular tissue compartments. We
Degradation of extracellular matrix (ECM) during tendinopathy is, in part, mediated by the collagenolytic cathepsin K (catK) and cathepsin L (catL), with a temporal component to their activity. The objective of this study was to determine how catK and catL act in concert or in conflict to degrade
The pathologic mechanisms underlying fluoroquinolone-induced tendinopathy are poorly understood. The observed incidence of tendinitis and tendon rupture in patients treated with ciprofloxacin hydrochloride suggests that the fluoroquinolone antibiotics alter tendon fibroblast metabolism. The purpose
The molecular changes occurring in rotator cuff tears are still unknown, but much attention has been paid to better understand the role of matrix metalloproteinases (MMP) in the development of tendinopathy. These are potent enzymes that, once activated, can completely degrade all components of the
Tenomodulin (Tnmd, also called Tendin) is classified as a type II transmembrane glycoprotein and is highly expressed in developing as well as in mature tendons. Along with scleraxis (scx), Tnmd is a candidate marker gene for tenocytes. Its function is unknown, but it has been reported to have