Glycogen breakdown in cleaving Xenopus embryos is limited by ADP.
Түлхүүр үгс
Хураангуй
Xenopus eggs contain large stores of glycogen, but this glycogen is not glycolytically processed during cleavage. The Embden-Meyerhof pathway is inhibited by the absence of pyruvate kinase activity in vivo, and lactate and pyruvate are present at relatively low levels. In the late blastula, just preceding gastrulation, lactate levels increase, indicating the onset of glycogen breakdown and glycolytic flux. Glycolysis from microinjected [14C]glucose-6-phosphate could be transiently activated, however, by the coinjection of ADP into fertilized eggs, and constitutively activated by the injection of the ATPase potato apyrase, indicating the presence of all enzymes necessary for glycolytic activity. The isozyme profiles of pyruvate kinase and malic enzyme, two enzymes involved in carbon metabolism during cleavage or in the subsequent activation of glycogen breakdown, do not change between the egg and gastrula stages. These data suggest that the activation of glycogen breakdown and glycolysis in the late blastula is probably not a result of new gene activity but may be the metabolic consequence of increased free ADP that is then able to support the pyruvate kinase reaction.