Хуудас 1 -аас 23 үр дүн
Arachidonic acid is an essential constituent of cell membranes that is esterified to the sn-2-position of glycerophospholipids and is released from selected lipid pools by phospholipase cleavage. The released arachidonic acid can be metabolized by three enzymatic pathways: the cyclooxygenase pathway
Recent investigations in our laboratory showed that voltage-gated sodium channels (VGSCs) in brain are sensitive to inhibition by various synthetic cannabinoids and endocannabinoids. The present experiments examined the effects of the cannabinoid-1 (CB1) receptor agonist CP-55,940 and ethyl
The stimulation of prostaglandin E2 synthesis by delta 1-tetrahydrocannabinol in cultured cells is rapidly diminished by successive exposures to the drug at 24-hr intervals. Cannabidiol and cannabicyclol, two other constituents of cannabis, also displayed this in vitro tolerance effect. The
Arachidonylethanolamide (AEA), the putative endogenous ligand of the cannabinoid receptor, has been shown to be a substrate for lipoxygenase enzymes in vitro. One goal of this study was to determine whether lipoxygenase-rich cells metabolize AEA. [14C]AEA was converted by human polymorphonuclear
Arachidonylethanolamide (AEA) isolated from porcine brain binds to cannabinoid receptors, mimics cannabinoid pharmacologic effects, and has been proposed as an endogenous cannabinoid receptor ligand. Demonstration of co-distribution of AEA and cannabinoid receptors in various brain regions could
Since the identification of nitric oxide (NO) as an important mediator of endothelium-dependent relaxation, it has become clear that there is an additional endothelial relaxant factor, termed the endothelium-derived hyperpolarizing factor (EDHF). The identity of EDHF has remained elusive, but it is
Elucidation of pathways involved with lipid metabolism has been limited by analytical challenges associated with detection and structure identification. A discovery-based mass spectrometry lipidomic approach has been applied to identify metabolites of the endogenous cannabinoid anandamide
Cannabinoids have been shown to affect various aspects of arachidonic acid metabolism both in vivo and in vitro. Eicosanoid metabolites of arachidonate and related octadecanoate are believed to be involved in cell adhesion processes as agonists in some instances and as antagonists in other cases.
Action potentials trigger synaptic terminals to synchronously release vesicles, but some vesicles release spontaneously. G-protein-coupled receptors (GPCRs) can modulate both of these processes. At cranial primary afferent terminals, the GPCR cannabinoid 1 (CB1) is often coexpressed with transient
Anandamide, an endogenous eicosanoid derivative (arachidonoylethanolamide), binds to the cannabinoid receptor, a member of the G protein-coupled superfamily. It also inhibits both adenylate cyclase and N-type calcium channel opening. The enzymatic synthesis of anandamide in bovine brain tissue was
Cannabinoids were found to augment phospholipase activities and modify lipid levels of mouse brain synaptosomes, myelin and mitochondria. Delta-1-tetra-hydrocannabinol (delta 1-THC) and several of its metabolites induced a dose-dependent (0.32-16 microM) stimulation of phospholipase A2 (PLA2)
The exposure of cells in culture to cannabinoids results in a rapid and significant mobilization of phospholipid bound arachidonic acid. In vivo, this effect has been observed as a rise in eicosanoid tissue levels that may account for some of the pharmacological actions of delta
Cannabinoids delta 1-tetrahydrocannabinol, cannabinol, cannabidiol and cannabigerol have been shown to affect directly the activity of phospholipase A2 in a cell-free assay. The compounds produced a biphasic activation of the enzyme, with EC50 values in the range 6.0-20.0 X 10(-6) M and IC50 values