Хуудас 1 -аас 50 үр дүн
Two molecules of cavitand tetraboronic acid and four molecules of various bis(catechol) linkers self-assemble into capsules through the formation of eight dynamic boronic ester bonds. Each capsule has a different cavity size depending on the linker used, and shows particular guest encapsulation
Obtaining more structural information of human dopamine D(2) receptor may help in the design of better therapeutic agents against diseases such as Parkinson. In this study attempts have been made to develop a functional model for the catechol binding site of the human dopamine D(2) receptor, with
The crystallographic structures of 4-chlorocatechol 1,2-dioxygenase (4-CCD) complexes with 3,5-dichlorocatechol, protocatechuate (3,4-dihydroxybenzoate), hydroxyquinol (benzen-1,2,4-triol) and pyrogallol (benzen-1,2,3-triol), which act as substrates or inhibitors of the enzyme, have been determined
Parkinson's disease (PD) is a neurodegenerative, chronic, and progressive disease, common in the elderly. The catechol-O-methyltransferase (COMT) is a monomeric enzyme involved in dopamine (DA) degradation, the neurotransmitter in deficit in patients with PD. The reference treatment of PD
The therapeutic effectiveness of the catechol diether analogs against both the wild-type and drug-resistant reverse transcriptase (RT) mutants of HIV strains are investigated by performing molecular docking and hybrid ONIOM calculations. The docking protocol has been used to predict the binding
A complex between native, iron(II) soybean lipoxygenase 3 and 4-nitrocatechol, a known inhibitor of the enzyme, has been detected by isothermal titration calorimetry and characterized by X-ray crystallography. The compound moors in the central cavity of the protein close to the essential iron atom,
The different behaviour of two isozymes (IsoA and IsoB) of catechol 1,2-dioxygenase (C 1,20) from Acinetobacter radioresistens S13 on a hydrophobic interaction, Phenyl-Sepharose chromatographic column, prompted us to investigate the role of superficial hydrophobicity on structural-functional aspects
BACKGROUND
Intradiol dioxygenases catalyze the critical ring-cleavage step in the conversion of catecholate derivatives to citric acid cycle intermediates. Catechol 1,2-dioxygenases (1, 2-CTDs) have a rudimentary design structure - a homodimer with one catalytic non-heme ferric ion per monomer, that
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and
Local administration of chemotherapeutic drugs to a tumor site in the oral cavity can provide high drug concentrations in the tumor area and reduce systemic side effects. In this work, catechol (Cat)-modified chitosan/hyaluronic acid (HA) nanoparticles (NPs), hereinafter referred to as Cat-NPs, were
Selected natural compounds were evaluated for their effects on dental caries due to different strains of Streptococcus mutans bacteria. Out of 39 tested compounds, four (catechol, emetine, quinine, and flavone) showed potent inhibitory activity on different strains of S. mutans at 6.25 microg/mL or
Drug administration via buccal mucosa is an attractive drug delivery strategy due to good patient compliance, prolonged localized drug effect, and avoidance of gastrointestinal drug metabolism and first-pass elimination. Buccal drug delivery systems need to maintain an intimate contact with the
Di- and tricatechol imines are easily accessible by condensation of appropriate amines with 2,3-dihydroxybenzaldehyde. Dicatechol imines can be used for the alkali metal template-directed self-assembly of dinuclear triple-stranded helicates or meso-helicates with high diastereoselectivity.
The human Monoamine oxidase (hMAO) metabolizes several biogenic amine neurotransmitters and is involved in different neurological disorders. Extensive MD simulation studies of dopamine-docked hMAO B structures have revealed the stabilization of amino-terminal of the substrate by a direct and
A new design concept in controlled release chemistry is reported in this study. Unlike current depots that release drugs in all direction by an isotropic way, we demonstrate that directional release only to a clinically beneficial direction results in improved disease treatment. To achieve the