Хуудас 1 -аас 65 үр дүн
Changes in enzymes and metabolites of the carbohydrate metabolism in skeletal muscles were studied in mice after intracerebral inoculation of dengue type 2 virus. It was noted that lactic dehydrogenase, aldolase, phosphoglucoisomerase, phosphoglucomutase, GO-T and GP-T activity were enhanced
Dengue viruses infect cells by attaching to a surface receptor which remains unknown. The putative receptor molecules of dengue virus type 2 on the surface of mosquito (AP-61) and mammalian (LLC-MK2) cell lines were investigated. The immunochemical detection and structural analysis of carbohydrates
The interaction between cell surface receptors and the envelope glycoprotein (EGP) on the viral membrane surface is the initial step of Dengue virus infection. To understand the host range, tissue tropism, and virulence of this pathogen, it is critical to elucidate the molecular mechanisms of the
Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent
BACKGROUND
Dendritic cells (DC), present in the skin, are the first target cells of dengue virus (DENV). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) is present on DC and recognizes N-glycosylation sites on the E-glycoprotein of DENV. Thus, the
Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) is an important binding receptor for dengue virus (DENV) that recognizes N-glycosylation sites on the viral E-glycoprotein. DENV cannot bind nor infect the human B-cell line Raji/0. However, DENV productively
Dengue virus (DENV), which is transmitted by Aedes mosquitoes, causes fever and hemorrhagic disorders in humans. The virus entry process mediated through host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue disease. Therefore, elucidation of the
Dengue virus (DENV) is a significant human pathogen that causes millions of infections and results in about 24,000 deaths each year. Dendritic cell-specific ICAM3 grabbing nonintegrin (DC-SIGN), abundant in immature dendritic cells, was previously reported as being an ancillary receptor interacting
Dengue virus (DENV) infection is a significant burden in Indonesia and other tropical countries. DENV infection has a wide spectrum of clinical manifestations, i.e. asymptomatic, dengue fever, dengue hemorrhagic fever and dengue shock syndrome. The variety of clinical manifestations may be due to
We have previously isolated and characterized two dengue (DEN) 2 viruses mutant in their fusion-from-within (FFWI) phenotype in the insect cell line C6/36. Both viruses lost a potential glycosylation site (Asn-153) in the envelope (E) glycoprotein. To determine whether the change in FFWI phenotype
Carbohydrate binding agents (CBAs), including natural lectins, are more and more considered as broad-spectrum antivirals. These molecules are able to directly inhibit many viruses such as Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), Dengue Virus, Ebola Virus or Severe Acute
A series of 12 carbohydrate compounds were synthesized by introduction of a sulfated group at specific positions and evaluated for their activities against dengue virus (DENV) infection as well as binding to BHK-21 cells. 3-O-sulfated GlcA was active against DENV infection, whereas 2-O-sulfated GlcA
DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67
Herein we describe the synthesis of 1,2,4-triazolyl-3-thione;1,3,4-oxadiazole, and imidazo[2,1-b]thiazole derivatives from carbohydrates. The antiviral activity of these compounds was tested against Dengue and Junin virus (the etiological agent of Argentine hemorrhagic fever). The
The molecular recognition of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) with arthropod-derived N-glycans on E-glycoprotein is essential for dengue virus (DENV) infection in humans. Therefore, the specific interaction of DC-SIGN with N-glycans on