7 үр дүн
OBJECTIVE
To investigate the effects of flavone extracted from the leaves of Diospyros kaki on the apoptosis of rat cardiac myocytes induced by hypoxia-reoxygenation and advanced glycation end products in vitro.
METHODS
The cardiac myocytes were isolated from neonatal SD rats and cultured in vitro
Naoxinqing (NXQ, a standardized extract of Diospyros kaki leaves) is a patented and approved drug of Traditional Chinese Medicine (TCM) used for the treatment of apoplexy syndrome for years in China, but its underlying mechanism remains to be further elucidated. The present study investigates the
Identification and functional characterization of hypoxia-responsive transcription factors is important for understanding plant responses to natural anaerobic environments and during storage and transport of fresh horticultural products. In this study, yeast one-hybrid library screening using the
Most persimmon (Diospyros kaki) cultivars are astringent and require postharvest de-astringency treatments such as 95% CO2 (high CO2 treatment) to make them acceptable to consumers. High CO2 treatment can, however, also induce excessive softening, which can be reduced by adding 1-methylcyclopropene
The influence of the maternal genotype (Canton-S, proficient in the repair of X-ray-induced chromosome breaks and ebony, less proficient in this regard) on the recovery of X-ray-induced autosomal (II-III) translocations and ring-X chromosome losses in mature spermatozoa was studied. In the first
The persimmon fruit is a particularly good model for studying fruit response to hypoxia, in particular, the hypoxia-response ERF (HRE) genes. An anaerobic environment reduces fruit astringency by converting soluble condensed tannins (SCTs) into an insoluble form. Although the physiology of
BACKGROUND
Flavonoids, extracted from the leaves of Diospyros kaki, are the main therapeutic components of NaoXingQing (NXQ), a potent and patented Chinese herbal remedy widely used in China for the treatment of apoplexy syndrome.
OBJECTIVE
To investigate the neuroprotective effects of FLDK-P70, a