Хуудас 1 -аас 20 үр дүн
Although previous studies have investigated the association of cruciferous vegetable consumption with breast cancer risk, few studies focused on the association between bioactive components in cruciferous vegetables, glucosinolates (GSL) and isothiocyanates (ITC), and breast cancer risk. This study
Cruciferous vegetables contained high levels of glucosinolates (GSL) and isothiocyanates (ITC). ITC is known to induce glutathione S-transferases (GSTs) thus exert its anticarcinogenic effects. This study explored the combined effects of cruciferous vegetables, GSL, ITC intake and GST polymorphisms
Cruciferous vegetables are a major source of glucosinolate-derived bioactive compounds such as isothiocyanates, which have been shown in animal and in vitro studies to inhibit cancer growth and progression. Few studies have investigated cruciferous vegetable intake after diagnosis and breast cancer
Brassica vegetable consumption (e.g., Chinese cabbage) provides isothiocyanates (ITC) and other glucosinolate derivatives capable of inducing Phase II enzymes [e.g., glutathione S-transferases (GSTM1, GSTT1, and GSTP1) and NADPH quinine oxidoreductase] and apoptosis, altering steroid hormone
BACKGROUND
Cruciferous vegetables are the primary source of isothiocyanates and other glucosinolate derivatives that are known to induce phase II detoxifying enzymes, including glutathione S-transferases (GSTs).
OBJECTIVE
We investigated the independent and combined effects of cruciferous vegetable
Background: The effect of cruciferous vegetable intake on breast cancer survival is controversial at present. Glucosinolates are the naturally occurring constituents found across the cruciferous vegetables. Isothiocyanates are produced
Indole-3-carbinol (I3C), autolysis product of glucosinolates present in cruciferous vegetables, has been indicated as a promising agent in preventing the development and progression of breast cancer. I3C has been shown to inhibit the growth of human cancer cells in vitro and possesses
BACKGROUND
Indole-3-carbinol (I3C), an autolysis product of glucosinolates present in cruciferous vegetables, and its dimeric derivative (3,3'-DIM) have been indicated as promising agents in preventing the development and progression of breast cancer. We have recently shown that I3C cyclic
Moringa oleifera is a miracle plant with many nutritional and medicinal properties. Chemopreventive values of the combined mixture of moringa leaves and seed residue (MOLSr) at different ratios (M1S9, M1S1 and M9S1) were investigated. MOLSr extracts were subjected to phytochemical screening,
Indole-3-carbinol (I3C) is a naturally occurring glucosinolate found in Brassica vegetables that is usually converted in gastric acidic environment to the efficient metabolite 3,3'-diindolylmethane (DIM). Both indoles (I3C and DIM) are known chemopreventive agents for various cancers including
BACKGROUND
Brassicaceae plants are associated with protection against cancers due to their glucosinolate contents.
OBJECTIVE
We investigate fresh leaves, roots and ripe seeds of Lobularia libyca (Viv.) C.F.W. Meissn. (Brassicaceae) to identify their glucosinolate constituents, antimicrobial and
Glucosinolates (GSLs) from Lunaria annua L. seeds were analyzed qualitatively and quantitatively by their desulfo counterparts using UHPLC-DAD-MS/MS technique and by their volatile breakdown products, isothiocyanates (ITCs), using GC-MS technique. GSL breakdown products were obtained by
In the original publication, the values provided for the isoflavone and glucosinolate intake variables were incorrectly labeled in Table 1. The correct values of 6.3 mg/day for isoflavone intake, and 20.4 mg/day and 50.1 mg/day for glucosinolate intake are provided in this erratum.
The present study envisages the cytotoxic potential of 3-butenyl isothiocyanate isolated from Brassica juncea L. Czern var. Pusa Jaikisan against the human cancer cell lines viz. prostate, bone osteosarcoma, cervical, liver, neuroblastoma and breast cancer. As the compound was observed to be more
Aberrant proliferation is an early-occurring intermediate event in carcinogenesis whose inhibition may represent preventive intervention. Indole-3-carbinol (I3C), a glucosinolate metabolite from cruciferous vegetables, inhibits organ site carcinogenesis in rodent models. Clinically relevant