9 үр дүн
BACKGROUND
Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular
Combined genomics and metabolomics approaches were used to unravel molecular mechanisms behind interactions between winter cress (Barbarea vulgaris) and flea beetle (Phyllotreta nemorum). B. vulgaris comprises two morphologically, biochemically and cytologically deviating types, which differ in flea
Plants are continuously infected by various pathogens throughout their lifecycle. Previous studies have reported that the expression of Class III acyl-CoA-binding proteins (ACBPs) such as the Arabidopsis ACBP3 and rice ACBP5 were induced by pathogen infection. Transgenic Arabidopsis
Myrosinase is regarded as a defense-related enzyme in the Brassicaceae and is capable of hydrolyzing glucosinolates into various compounds, some of which are toxic. Several myrosinase isoenzymes exist, and some of them have been found in association with nonmyrosinase proteins. One of these
Sulfate assimilation is a pathway providing reduced sulfur for the synthesis of cysteine, methionine, co-enzymes such as iron-sulfur centres, thiamine, lipoic acid, or Coenzyme A, and many secondary metabolites, e.g., glucosinolates or alliins. The pathway is relatively well understood in flowering
Sulfur is an essential macronutrient required for plant growth. To identify key transcription factors regulating the sulfur assimilatory pathway, we screened Arabidopsis thaliana mutants using a fluorescent reporter gene construct consisting of the sulfur limitation-responsive promoter of the
The plant PTR/NRT1 (peptide transporter/nitrate transporter 1) gene family comprises di/tripeptide and low-affinity nitrate transporters; some members also recognize other substrates such as carboxylates, phytohormones (auxin and abscisic acid), or defence compounds (glucosinolates). Little is known
The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized.
Brassicaceae plants rich in glucosinolates have been used as biofumigants for management of Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) and other soilborne pathogens. Efficacy of brassica plant tissue has mainly been attributed to toxic isothiocyanates released upon hydrolysis of