6 үр дүн
Bacterial indole-3-acetyl-l-aspartic acid (IAA-Asp) hydrolase has shown very high substrate specificity compared with similar IAA-amino acid hydrolase enzymes found in Arabidopsis thaliana. The IAA-Asp hydrolase also exhibits, relative to the Arabidopsis thaliana-derived enzymes, a very high Vmax
Transgenic Arabidopsis lines (ecotype Col-0) carrying the Enterobacter agglomerans IaaspH gene under CaMV 35S promoter control were more sensitive to exogenous indole-3-acetyl aspartic acid (IAA-Asp) and metabolized [2'-14C]IAA-Asp more rapidly than control lines. Free IAA, total IAA and IAN levels
Salicylic acid (SA) and methyl salicylate (MeSA) are synthesized in many plants and are crucial components that establish their disease responses. The metabolism of airborne MeSA to SA has been previously reported. In this report, it was found that SA glucose ester (SAGE), ether (SAG), and
Asparaginase catalyzes the degradation of L-asparagine to L-aspartic acid and ammonia, and is implicated in the catabolism of transported asparagine in sink tissues of higher plants. The Arabidopsis genome includes two genes, ASPGA1 and ASPGB1, belonging to distinct asparaginase subfamilies.
* Specific transporters mediate uptake of amino acids by plant roots. Earlier studies have indicated that the lysine histidine transporter 1 and amino acid permease 1 participate in this process, but although plant roots have been shown to absorb cationic amino acids with high affinity, neither of
Recombinant plant-type asparaginases from the cyanobacteria Synechocystis sp. PCC (Pasteur culture collection) 6803 and Anabaena sp. PCC 7120, from Escherichia coli and from the plant Arabidopsis thaliana were expressed in E. coli with either an N-terminal or a C-terminal His tag, and purified.