Хуудас 1 -аас 30 үр дүн
Rhizosphere bacterial communities of two transgenic potato lines which produce T4 lysozyme for protection against bacterial infections were analyzed in comparison to communities of wild-type plants and transgenic controls not harboring the lysozyme gene. Rhizosphere samples were taken from young,
The composition and relative abundance of endophytic fungi in roots of field-grown transgenic T4-lysozyme producing potatoes and the parental line were assessed by classical isolation from root segments and cultivation-independent techniques to test the hypothesis that endophytic fungi are affected
Rhizobacteria obtained during a risk assessment study from parental and transgenic T4 lysozyme-expressing potato plants were investigated to determine whether or not the strains could be grouped based on the source of isolation, transgenic or non-transgenic plants, respectively. A total of 68
With the aim of determining suitable conditions for uptake and release of globular proteins on microgels, we studied the interaction between phosphated, highly cross-linked, negatively charged oxidized potato starch polymer (OPSP) microgel particles and lysozyme from hen eggs. Our microgel shows a
A biodegradable microgel system based on glycerol-1,3-diglycidyl ether (GDGE) cross-linked TEMPO-oxidized potato starch polymers was developed for controlled uptake and release of proteins. A series of microgels were prepared with a wide range of charge density and cross-link density. We found both
Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of
BACKGROUND
Traditional energy sources in catfish diets have become costly, and economical alternatives are needed. Sweet potato leaves are underutilised agricultural by-products that provide energy and substantial amounts of phenols, which affect animal and human health. There is little information
This study aimed to investigate the immune activity of sweet potato (Ipomoea batatas L.) glycoprotein (SPG-1) before and after enzymatic and chemical modifications. The protein portion of SPG-1 was modified by pepsin, trypsin, and acetylation treatments. The carbohydrate portion was modified by
Three chitin-binding proteins (CBPs: CBP9, CBP15, CBP66) were identified from the larval hemolymph of sweet potato hornworm, Agrius convolvuli. Two (CBP9 and CBP15) of them have been isolated and purified by gel filtration (Superdex HR 75), cation-exchange chromatography (Mono S), and reverse-phase
Glycerol plasticized potato starch films containing bioactive proteins (lactoferrin (LF) and/or lysozyme (LZ), at 0.1 and 0.2 ratio with respect to starch) were obtained by casting method and characterized as to their microstructural, thermal and physical (water content, mechanical, water and oxygen
ABSTRACT The lysozyme from Erwinia amylovora phage PhiEa1h was investigated for its ability to inhibit growth of bacteria and compared with the lysozyme from Escherichia coli phage T4. The assays to measure lysozyme activity included cell lysis and growth inhibition of bacteria. Bacterial strains
Transgenic potato plants expressing the phage T4 lysozyme gene which are resistant to the plant-pathogenic enterobacterium Erwinia carotovora subsp. carotovora have been constructed. The agricultural growth of these potatoes might have harmful effects on soil microbiota as a result of T4 lysozyme
The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Désirée, Merkur and transgenic Désirée line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons
The chemistry and use of lysozyme as a food preservative and a pharmaceutical are reviewed. Lysozyme inhibits the growth of deleterious organisms, thus prolonging shelf life. Chemicals used to improve the preservative effect of lysozyme and those that inhibit the enzyme are discussed, along with the
Haemolytic activity was identified in cell-free haemolymph from larval and imago stages of Leptinotarsa decemlineata. The haemolytically active fraction of the haemolymph was active against human, sheep, bull, toad and mouse erythrocytes. There was no haemolysis in the presence of 0.001 M EDTA and