Хуудас 1 -аас 49 үр дүн
Organic acids play an important role in metal uptake and trafficking in plants. Therefore, the role of exogenous citrate and malate on Cd tolerance was studied in the seedlings of Oryza sativa L. cv MTU 7029. Seedlings were exposed to Cd plus organic acids in hydroponics and monitored changes in Cd
Cadmium (Cd) accumulation and related stress responses have been investigated in red, blue and white lights exposed Oryza sativa L. cv MTU 7029. Cd translocation was reduced significantly by red and blue lights. Increase in amount of organic acids, thiols, and nutrients in the roots that cause Cd
Red rice (Oryza sativa L.) that has a red (reddish brown) bran layer in de-hulled rice is known to contain rich biofunctional components. Germination is an effective technique to improve the nutritional quality, digestibility, and flavor of de-hulled rice. Ultrasonication, a form of physical
The negative charge at the root surface is mainly derived from the phosphate group of phospholipids in plasma membranes (PMs) and the carboxyl group of pectins in cell walls, which are usually neutralized by calcium (Ca) ions contributing to maintain the root integrity. The major toxic effect of
Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a predominant
*Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the
OBJECTIVE
Rice (Oryza sativa) is an aquatic plant with a characteristic of forming iron plaque on its root surfaces. It is considered to be the most Al-tolerant species among the cereal crops. The objective of this study was to determine the effects of root surface iron plaque on Al translocation,
It has been hypothesised that enhanced organic acid release from the roots of zinc-efficient rice (Oryza sativa L.) genotypes plays a strong role in plant tolerance to both bicarbonate excess and Zn deficiency. To address several uncertainties in the literature surrounding the tolerance of rice to
Salinization is one of the most important abiotic stressors for crop growth and productivity. Rice (Oryza sativa L.), as the major food source around the world, is very sensitive to salt, especially at seedling stage. In order to examine how salt stress influences the metabolism of rice, we compared
Metabolite profiling of rice leaves (Oryza sativa cv. Ilmi) was performed to investigate the short-term responses to different light-emitting diode (LED) lights, blue (B), green (G), red (R), white (W), shade (S), by using gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a predominant polybrominated diphenyl ether (PBDE), has received extensive attention for its potential environmental impact. An integrated study of metabolomics and transcriptomics was conducted on two rice (Oryza sativa) cultivars, Lianjing-7 (LJ-7) and
Large amounts of microplastics accumulate in the agricultural soil. Microplastics would stress the crops but the underlying mechanism remains unclear. Herein, a laboratory exposure and field trials were carried out to investigate the response of rice (Oryza sativa L. II You. 900) to stress induced
A hydroponic experiment with two different cadmium (Cd) accumulating rice lines of Lu527-8 (the high Cd accumulating rice line) and Lu527-4 (the normal rice line) was carried out to explore the links among Cd stress, root exudates and Cd accumulation. The results showed that (1) Cd stress increased
Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study. Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd-spiked
Cadmium (Cd) stress responses in seedlings of two Indian rice cultivars, MTU 7029 and MO 16 were investigated under ammonium-based fertilizer amendment. Cd translocation was reduced by fertilizer treatment. An increase in the production of organic acids as well as nitrogenous compounds and