Хуудас 1 -аас 49 үр дүн
Somatic mutations in receptor tyrosine kinase FGFR3 cause excessive cell proliferation, leading to cancer or skin overgrowth. Remarkably, the same mutations inhibit chondrocyte proliferation and differentiation in developing bones, resulting in skeletal dysplasias, such as hypochondroplasia,
Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed
The FGFR3 gene encodes fibroblast growth factor receptor 3 protein, a negative regulator of chondrogenesis. Gain-of-function mutations result in constitutively activated FGFR3, leading to aberrant signal transduction, and accounting for inhibition of chondrocyte proliferation and differentiation.
Hypochondroplasia (MIM 146000) is an autosomal dominant skeletal dysplasia with skeletal features similar to but milder than those seen in achondroplasia. Within the past year, the achondroplasia locus has been mapped to 4p 16.3 (refs 5-7) and mutations in the fibroblast growth factor receptor 3
Specific germline activating point mutations in the gene encoding the tyrosine kinase receptor FGFR3 (fibroblast growth factor receptor 3) result in autosomal dominant human skeletal dysplasias. The identification in multiple myeloma and in two epithelial cancers-bladder and cervical carcinomas-of
The effect of six point mutations causing various human skeletal dysplasias, occurring in the transmembrane (TM) and kinase domains (KD) of fibroblast growth factor receptor 3, were introduced into a chimera composed of the extracellular domain of human platelet-derived growth factor beta and the TM
Fibroblast growth factor receptors belong to the family of a membrane bound tyrosine kinases, which respond to stimulation by the fibroblast growth factor family of cytokines. Signalling through fibroblast growth factor receptors regulates proliferation and differentiation of connective tissue
Achondroplasia, the most common and best known skeletal dysplasia, is inherited in an autosomal dominant fashion. Like a number of other skeletal dysplasias, among which hypochondroplasia and thanatophoric dysplasia, achondroplasia is caused by mutations in the fibroblast growth factor receptor 3
The fibroblast growth factor-receptor 3 (FGFR3) Lys650 codon is located within a critical region of the tyrosine kinase-domain activation loop. Two missense mutations in this codon are known to result in strong constitutive activation of the FGFR3 tyrosine kinase and cause three different skeletal
In 1994, the field of bone biology was significantly advanced by the discovery that activating mutations in the fibroblast growth factor receptor 3 (FGFR3) receptor tyrosine kinase (TK) account for the common genetic form of dwarfism in humans, achondroplasia (ACH). Other conditions soon followed,
Mutations of the Fibroblast Growth Factor Receptor 3 (FGFR3) gene have been implicated in a series of skeletal dysplasias including hypochondroplasia, achondroplasia and thanatophoric dysplasia. The severity of these diseases ranges from mild dwarfism to severe dwarfism and to perinatal lethality,
We previously discovered a novel missense mutation (Lys650Met) in the tyrosine kinase domain of the fibroblast growth factor receptor 3 (FGFR3) gene in four unrelated individuals with a condition we called "severe achondroplasia with developmental delay and acanthosis nigricans" (SADDAN) [Tavormina
Thanatophoric dysplasia type II (TDII) is a neonatal lethal skeletal dysplasia caused by a recurrent Lys-650-->Glu mutation within the highly conserved activation loop of the kinase domain of fibroblast growth factor receptor 3 (FGFR3). We demonstrate here that this mutation results in profound
Thanatophoric dysplasia type I (TDI) is a neonatal lethal skeletal dysplasia caused by several mutations in the extracellular domain of fibroblast growth factor receptor 3. These mutations occur either in the Ig2-Ig3 linker domain or in the extracellular juxtamembrane domain, and all involve
Activating mutations within fibroblast growth factor receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes thanatophoric dysplasia types I and II. Several of these same FGFR3 mutations have also been