Хуудас 1 -аас 18 үр дүн
A glucosyltransferase, which catalyses the glucosylation of flavonols, using uridine diphosphate-D-glucose as glucose donor, has been isolated and purified about 5-10 fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The pH optimum for this reaction was ca. 8.5 in
Glycyrrhetinic acid, as pentacyclic triterpenoid aglycone, is the major functional component in licorice which mainly exists in the form of functional glycosides in licorice. The introduction of sugar moiety to the C-3 OH of GA to yield glycosylated derivatives has been reported, but the late-stage
Protoplasts were prepared from cells of soya-bean (Glycine max) suspension cultures and the plasma membrane was labelled with diazotized [G-3H]sulphanilic acid. Homogenates were fractionated by differential and isopycnic centrifugation, and membrane fractions in a density gradient were characterized
Activity of pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) was investigated in relation to carbohydrate metabolism and physiological growth stage in mixotrophic soybean (Glycine max Merr.) suspension cells. In the presence of exogenous sugars, log phase growth occurred and the cells
Natural product glycosylations by Leloir glycosyltransferases (GTs) require expensive nucleotide-activated sugars as substrates. Sucrose synthase (SuSy) converts sucrose and uridine 5'-diphosphate (UDP) into UDP-glucose. Coupling of SuSy and GT reactions in one-pot cascade transformations creates a
Hemicellulose is a major component of primary plant cell walls. Many of the glycosyl residues found in hemicellulose are derived from the sugar precursor UDP-glucuronic acid, which can be converted into UDP-arabinose, UDP-apiose, UDP-galacturonic acid, and UDP-xylose. The enzyme controlling the
Isoflavones, a class of flavonoids, play very important roles in plant-microbe interactions in certain legumes such as soybeans (Glycine max L. Merr.). G. max UDP-glucose:isoflavone 7-O-glucosyltransferase (GmIF7GT) is a key enzyme in the synthesis of isoflavone conjugates, which accumulate in large
Dolichyl phosphate (C55) and dolichyl phosphate prepared from liver were incubated with an enzyme prepared from soya-bean protoplasts. They both stimulated the transfer of radioactivity from UDP-D-glucose to lipid, but the stimulation was greater with liver dolichyl phosphate. Liver dolichyl
Uridine diphosphate glucose dehydrogenases (UGDHs) are critical for synthesizing many nucleotide sugars and help promote the carbohydrate metabolism related to cell wall synthesis. In plants, UGDHs are encoded by a small gene family. Genome-wide analyses of these genes have been conducted in Glycine
Sugar nucleotide-dependent (Leloir) glycosyltransferases are powerful catalysts for glycoside synthesis. Their applicability can be limited due to elaborate production of enzyme preparations deployable in biocatalytic processes. Here, we show that efficient enzyme formulation promotes
Isoorientin and isovitexin, kinds of flavone C-glycosides, exhibit a number of biological properties. In this work, The C-glucosyltransferase (Gt6CGT) gene from Gentiana triflora was cloned and expressed in Escherichia coli BL21(DE3). The optimal activity of Gt6CGT was at pH 7.5 and 50° C. The
Soybean (Glycine max) membranes co-equilibrating with Golgi vesicles in linear sucrose gradients contained UDP-glucuronate carboxy-lyase and xyloglucan synthase activities. Digitonin solubilized and increased the activity of the membrane-bound UDP-glucuronate carboxy-lyase. UDP-xylose did not
Soybeans (Glycine max L. Merr. cv Tracy and Ransom) were grown under N(2)-dependent or NO(3) (-)-supplied conditions, and the partitioning of photosynthate and dry matter was characterized. Although no treatment effects on photosynthetic rates were observed, NO(3) (-)-supplied plants in both
Experiments were conducted with vegetative soybean plants (Glycine max [L.] Merr., ;Ransom') to determine whether the activities in leaf extracts of key enzymes in sucrose metabolism changed during the daily light/dark cycle. The activity of sucrose-phosphate synthase (SPS) exhibited a distinct
Two plant-originated C-glucosyltransferases (CGTs) UGT708D1 from Glycine max and GtUF6CGT1 from Gentiana triflora were accessed for glucosylation of selected flavones chrysin and luteolin. Uridine diphosphate (UDP)-glucose pool was enhanced in Escherichia coli cell cytosol by introducing