Хуудас 1 -аас 108 үр дүн
Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides.
The effects of inorganic phosphate (Pi) deficiency on the expression of the UDP-glucose pyrophosphorylase (UGPase) gene (Ugp), involved in sucrose synthesis/metabolism, and on carbohydrate status were investigated in different tissues of Arabidopsis thaliana (L.) Heynh. For leaves, a decrease in
UDP-glucose pyrophosphorylase (UGPase) is a key enzyme producing UDP-glucose, which is involved in an array of metabolic pathways concerned with, among other functions, the synthesis of sucrose and cellulose. An Arabidopsis thaliana UGPase-encoding gene, Ugp, was profoundly up-regulated by feeding
A one-pot system for efficient enzymatic synthesis of curcumin glucosides is described. The method couples the activities of two recombinant enzymes, UDP-glucose: curcumin glucosyltransferase from Catharanthus roseus (CaUGT2) and sucrose synthase from Arabidopsis thaliana (AtSUS1). UDP, a product
The structure of the UDP-glucose pyrophosphorylase encoded by Arabidopsis thaliana gene At3g03250 has been solved to a nominal resolution of 1.86 Angstroms. In addition, the structure has been solved in the presence of the substrates/products UTP and UDP-glucose to nominal resolutions of 1.64
The folding of glycoproteins in the endoplasmic reticulum (ER) depends on a quality control mechanism mediated by the calnexin/calreticulin cycle. During this process, continuous glucose trimming and UDP-glucose-dependent re-glucosylation of unfolded glycoproteins takes place. To ensure proper
Endomembrane organization is essential for cell physiology. We previously identified an Arabidopsis thaliana mutant in which a plasma membrane (PM) marker GFP-NIP5;1 and trans-Golgi network/early endosome (TGN/EE) markers were accumulated in intracellular aggregates in epidermal cells of the root
Sucrose synthase (SuSy) catalyzes the reversible conversion of sucrose and NDP into the corresponding nucleotide-sugars and fructose. The Arabidopsis genome possesses six SUS genes (AtSUS1-6) that code for proteins with SuSy activity. As a first step to investigate optimum fructose and UDP-glucose
The sulfolipid sulfoquinovosyldiacylglycerol is a component of plant photosynthetic membranes and represents one of the few naturally occurring sulfonic acids with detergent properties. Sulfolipid biosynthesis involves the transfer of sulfoquinovose, a 6-deoxy-6-sulfoglucose, from UDP-sulfoquinovose
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme in the metabolism of UDP-glucose, a precursor for the synthesis of carbohydrate cell wall components, such as cellulose and callose. The Arabidopsis thaliana genome contains two putative genes encoding UGPase, AtUGP1 and AtUGP2. These
Ginsenoside F1 is a rare ginsenoside in medicinal plants such as Panax ginseng,P. notogingseng and P. quinquefolius. It has strong pharmacological activities of anti-tumor,anti-oxidation and anti-aging. In order to directly produce ginsenoside F1 by using inexpensive raw materials such as glucose,we
Using the basic local alignment search tool (BLAST) algorithm to search the Oryza sativa (Japanese rice) nucleotide sequence databases with the Arabidopsis thaliana UDP-galactose transporter sequences as queries, we found a number of sequences encoding putative O. sativa UDP-galactose transporters.
The catalytic function of plant secondary product glycosyltransferases (PSPGs) was investigated by coupling the activities of recombinant flavonoid glucosyltransferases having different regiospecificities with sucrose synthase from Arabidopsis thaliana. In the present system, UDP, a product
CONCLUSIONS
A UDP-glucose pyrophosphorylase gene ( LgUGPase ) was identified from Larix gmelinii, and its function in enhancing vegetative growth and cellulose biosynthesis was confirmed by analyzing transgenic Arabidopsis thaliana overexpressed LgUGPase . UDP-glucose pyrophosphorylase (UGPase), an
The synthesis of non-cellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as substrate. The topology of these reactions is not known, although the orientation of a plant galactosyltransferase involved in the biosynthesis of galactomannans in fenugreek