Хуудас 1 -аас 17 үр дүн
UDPGDH (UDP-D-glucose dehydrogenase) oxidizes UDP-Glc (UDP-D-glucose) to UDP-GlcA (UDP-D-glucuronate), the precursor of UDP-D-xylose and UDP-L-arabinose, major cell wall polysaccharide precursors. Maize (Zea mays L.) has at least two putative UDPGDH genes (A and B), according to sequence similarity
Corn plants (Zea mays L. cv Pioneer 3906) were grown in a glass house on control and saline nutrient solutions, in winter and summer. There were two saline treatments, both with osmotic potential = -0.4 megapascal but with different Ca(2+)/Na(+) ratios: 0.03 and 0.73. Root tips and shoot meristems
The effects of low concentrations of phosphate (low-P) on soluble protein content, the activities of 12 different enzymes, and the rates of photosynthesis and respiration on the basis of leaf area were investigated in maize (Zea mays L.) leaves 16 to 24 days after planting (DAP). With low-P
With the exception of cellulose and callose, the cell wall polysaccharides are synthesized in Golgi membranes, packaged into vesicles, and exported to the plasma membrane where they are integrated into the microfibrillar structure. Consistent with this paradigm, several published reports have shown
Sucrose (Suc) synthase (SUS) cleaves Suc to form UDP glucose and fructose, and exists in soluble and membrane-associated forms, with the latter proposed to channel UDP glucose to the cellulose-synthase complex on the plasma membrane of plant cells during synthesis of cellulose. However, the
Diurnal changes in the regulatory metabolite, fructose-2,6-bisphosphate (F26BP), and key metabolic intermediates of sucrose biosynthesis were studied in maize (Zea mays L. cv Pioneer 3184) during a day-night cycle. Whole leaf concentrations of dihydroxyacetonephosphate (DHAP) and fructose
A maize (Zea mays L. cv LG 11) root homogenate was prepared and centrifuged to sediment the mitochondria. The pellet (6 KP) and the supernatant (6 KS) were collected and fractionated on linear sucrose density gradients. Marker enzymes were used to study the distribution of the different cell
We measured fresh weight, dry weight, total protein, and the amounts of several individual proteins during endosperm development in three varieties of maize ( Zea mays L.): W64A wild-type (WT) and opaque-2 (o2), and sweet corn (SW). By 28 days after pollination (DAP), fresh weight was much higher in
We examined the mechanism of synthesis in vitro of (1-->3), (1-->4)beta-D-glucan (beta-glucan), a growth-specific cell wall polysaccharide found in grasses and cereals. beta-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1-->3)beta-linkages. The ratio of
The effects of external salt and inorganic phosphate (Pi) on the concentrations of vacuolar Pi, and cytoplasmic Pi, ATP, glucose-6-phosphate and UDP-glucose in maize root tips were examined using (31)P nuclear magnetic resonance spectroscopy. We observed a more than two-fold stimulation of Pi uptake
Reserve carbohydrates were determined on developing endosperm of a new line of sugary maize (Zea mays L.). Other entries, included for comparative purposes, were Midway (sugary), Funks G4646 (starchy), and Illini X-tra Sweet (shrunken-2). Sucrose in the new line, Illinois 677a, was more than twice
Mixed-linkage (1-->3),(1-->4)-beta-d-glucan is a plant cell wall polysaccharide composed of cellotriosyl and cellotetraosyl units, with decreasingly smaller amounts of cellopentosyl, cellohexosyl, and higher cellodextrin units, each connected by single (1-->3)-beta-linkages.
Sucrose synthase (Sus; EC 2.4.1.13) is a key enzyme of sucrose metabolism in plant cells, providing carbon for respiration and for the synthesis of cell wall polymers and starch. Since Sus is important for plant cell growth, insights into its structure, localization, and features are useful for
UNASSIGNED
UGT79B31 encodes flavonol 3- O -glycoside: 2″- O -glucosyltransferase, an enzyme responsible for the terminal modification of pollen-specific flavonols in Petunia hybrida. Flavonoids are known to be involved in pollen fertility in petunia (P. hybrida) and maize (Zea mays). As a first step
The century-old maize (Zea mays) salmon silks mutation has been linked to the absence of maysin. Maysin is a C-glycosyl flavone that, when present in silks, confers natural resistance to the maize earworm (Helicoverpa zea), which is one of the most damaging pests of maize in America. Previous