6 resultaten
N-Methyltransferases (NMTs) catalyze the three SAM dependent sequential methylation of xanthosine, producing caffeine in Coffea species. In the present work, a PCR based genome walking method was adopted to isolate and clone the promoter for the NMT gene. Inspection of the promoter sequence revealed
Caffeine (1,3,7-trimethylxanthine) is one of the most widely used plant secondary metabolites, primarily as a stimulant and an ingredient in drugs. In nature, caffeine is believed to function in chemical defense, acting as an antiherbivory and allelopathic agent, and therefore it might be employed
Caffeine (1,3,7-trimethylxanthine) is derived from xanthosine through three successive transfers of methyl groups and a single ribose removal in coffee plants. The methyl group transfer is catalyzed by N-zmethyltransferases, xanthosine methyltransferase (XMT), 7-methylxanthine methyltransferase
The purine permeases (PUPs) constitute a large plasma membrane-localized transporter family in plants that mediates the proton-coupled uptake of nucleotide bases and their derivatives, such as adenine, cytokinins, and caffeine. A Nicotiana tabacum (tobacco) PUP-family transporter, nicotine uptake
Residues from ancient artifacts can help identify which plant species were used for their psychoactive properties, providing important information regarding the deep-time co-evolutionary relationship between plants and humans. However, relying on the presence or absence of one or several biomarkers
Studies have been conducted on the dynamics of Ca2+ entry in pollen tubes using ratiometric ion imaging to measure the intracellular gradient and an ion selective vibrating electrode to detect the extracellular influx. A steep tip-focused gradient occurs in all species examined, including Lilium