11 resultaten
In the present study, 19 soybean (Glycine max L.) cultivars were analyzed and found to differ considerably in aluminum (Al) resistance. The cultivars Zhechun No. 2 (Al-resistant) and Zhechun No. 3 (Al-sensitive) were selected for further analysis. Experiments were performed with plants grown in full
Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the
Magnesium (Mg) deficiency, a widespread yet overlooked problem in agriculture, has been reported to retard plant growth and development, through affecting key metabolic pathways. However, the metabolic responses of plant to Mg deficiency is still not fully understood. Here we report a metabolomic
A greenhouse sand culture experiment was conducted to study the effects of citric acid, oxalic acid, malic acid, and their mixture on the nitrogen accumulation, nodulation, and nitrogen fixation of soybean. After the application of test low molecular weight organic acids, the nitrogen accumulation
Optimizing nutrient usage in plants is vital for a sustainable yield under biotic and abiotic stresses. Since silicon and phosphorus are considered key elements for plant growth, this study assessed the efficient supplementation strategy of silicon and phosphorus in soybean plants under salt stress
Most plants exhibit strong tolerance to excess molybdenum (Mo). However, the metabolic profile and tolerance mechanisms of plants in response to excess Mo remain unknown. We comprehensively analyzed changes in the metabolic profiles of leaves and roots in soybean (Glycine max L.) seedlings cultured
1. Callus tissues of Glycine max, cv. Acme, on solid or in liquid media quickly responded to cytokinins by synthesizing two compounds which appear to be glycosides of the deoxyisoflavone, daidzein. Auxin also was necessary for the effect. 2. After a lag, the response could be detected in 24 h or
A mutant strain of Bradyrhizobium japonicum USDA110 lacking isocitrate dehydrogenase activity was created to determine whether this enzyme was required for symbiotic nitrogen fixation with soybean (Glycine max cv. Williams 82). The isocitrate dehydrogenase mutant, strain 5051, was constructed by
The capacity of ligands in xylem fluid to form metal complexes was tested with a series of in vitro experiments using paper electrophoresis and radiographs. The xylem fluid was collected hourly for 8 hours from soybean (Glycine max L. Merr.) and tomato (Lycopersicon esculentum Mill.) plants grown in
Theoretical considerations of metal complex formation in aqueous solutions were used to develop a computer program (CHELATE) to calculate all equilibrium species (free metal ions, metal complexes, etc.) in any user-defined system, such as xylem fluid. Mass-balance equations were established to
Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean