Bladzijde 1 van 55 resultaten
Cytidine deaminase (CDA) catalyzes the (deoxy)cytidine deamination to (deoxy)uridine, which involves in the catabolic and salvage pathways of pyrimidine nucleotides in plants. CDA serves as a prototype of the cytidine deaminase superfamily that contains a number of RNA editing enzymes. Arabidopsis
The function and metabolic pathway of 3-deoxy-d-manno-octulosonate (KDO) are unclear in plants although it is an essential component in plant cell wall. Here we cloned and characterized a putative Arabidopsis thaliana cytidine monophosphate-KDO synthetase to understand synthetic pathways of KDO. It
The complementary DNA (cDNA) coding for Arabidopsis thaliana cytidine deaminase 1 (AT-CDA1) was obtained from the amplified A. thaliana cDNA expression library, provided by R. W. Davis (Stanford University, CA). AT-CDA1 cDNA was subcloned into the expression vector pTrc99-A and the protein,
The gene and cDNA of an Arabidopsis thaliana cytidine deaminase (CDA) were cloned and sequenced. The gene, At-cda1, is located on chromosome 2 and is expressed in all plant tissues tested, although with quantitative differences. Expression analysis suggest that At-cda1 probably codes for the
DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage
CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in
The homodimeric 2C-methyl-D-erythritol 4-phosphate cytidylyltransferase contributes to the nonmevalonate pathway of isoprenoid biosynthesis. The crystal structure of the catalytic domain of the recombinant enzyme derived from the plant Arabidopsis thaliana has been solved by molecular replacement
Cytidine diphosphate (CDP)-diacylglycerol synthase (cytidine triphosphate:phosphatidate cytihyltransferase, EC 2.7.7.41) catalyzes the formation of CDP-diacylglycerol, which is the precursor of phosphatidylinositol, phosphatidylglycerol, and cardiolipin. We report the first cloning, to our
A cDNA encoding the Arabidopsis thaliana uridine 5'-monophosphate (UMP)/cytidine 5'-monophosphate (CMP) kinase was isolated by complementation of a Saccharomyces cerevisiae ura6 mutant. The deduced amino acid sequence of the plant UMP/CMP kinase has 50% identity with other eukaryotic UMP/CMP kinase
Post-transcriptional maturation of plastid-encoded mRNAs from land plants includes editing by making cytidine to uridine alterations at highly specific positions; this usually restores codon identities for conserved amino acids that are important for the proper function of the affected proteins. In
Plastid and mitochondrial RNAs in vascular plants are subjected to cytidine-to-uridine editing. The model plant species Arabidopsis thaliana (Arabidopsis) has two nuclear-encoded plastid-targeted organelle RNA recognition motif (ORRM) proteins: ORRM1 and ORRM6. In the orrm1 mutant, 21
Chloroplast biogenesis is a complex process in higher plants. Screening chloroplast biogenesis mutants, and elucidating their molecular mechanisms, will provide insight into the process of chloroplast biogenesis. In this paper, we obtained an early chloroplast biogenesis mutant atecb2 that displayed
The X-ray crystal structure of the 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MCS) from Arabidopsis thaliana has been solved at 2.3 A resolution in complex with a cytidine-5-monophosphate (CMP) molecule. This is the first structure determined of an MCS enzyme from a plant. Major
In all organisms, transfer RNAs (tRNAs) contain numerous modified nucleotides. For many base modifications in tRNAs, the functional significance is not well understood, and the enzymes performing the modification reactions are unknown. Here, we have studied members of a family of putative nucleotide
BACKGROUND
RNA editing is a transcript-based layer of gene regulation. To date, no systemic study on RNA editing of plant nuclear genes has been reported. Here, a transcriptome-wide search for editing sites in nuclear transcripts of Arabidopsis (Arabidopsis thaliana) was performed.
RESULTS
MPSS