Bladzijde 1 van 24 resultaten
Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington's disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency
Low levels of full-length survival motor neuron (SMN) protein cause the motor neuron disease, spinal muscular atrophy (SMA). Although motor neurons undoubtedly contribute directly to SMA pathogenesis, the role of muscle is less clear. We demonstrate significant disruption to the molecular
Anticancer drugs induce apoptosis to cancer cells and also exhibit undesired toxicity to normal cells. Therefore development of novel agents triggering apoptosis and have low toxicity towards normal cells is most important. Hydroxamic acids suppress tumour cell growth through apoptosis but the
Inhibitors of histone deacetylase superfamily (HDAC), which induce cell cycle arrest, trigger cell death and reduce angiogenesis appear as promising anti-cancer drugs targeting the epigenetic regulation of gene expression. Approved HDAC inhibitors were found effective against haematological and
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein
Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder determined by functional impairment of alpha-motor neurons within the spinal cord. SMA is caused by functional loss of the survival motor neuron gene 1 (SMN1), whereas disease severity is mainly
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by mutation of the telomeric survival motor neuron 1 (SMN1) gene with retention of the centromeric SMN2 gene. We sought to establish whether the potent and specific hydroxamic acid class of histone deacetylase (HDAC)
Controlling degradation of the extracellular matrix is crucial in arthritic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA), as conventional treatments do not positively affect the structural properties of the articular tissues. Metalloproteases, a family of zinc-dependent
Histone deacetylase inhibitors (HDACi) are potential candidates for therapeutic approaches in cancer and neurodegenerative diseases such as spinal muscular atrophy (SMA)--a common autosomal recessive disorder and frequent cause of early childhood death. SMA is caused by homozygous absence of SMN1.
A novel amidase gene (bami) was cloned from Brevibacterium epidermidis ZJB-07021 by combination of degenerate PCR and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). The deduced amino acid sequence showed low identity (≤55 %) with other reported amidases. The bami gene was
We report the directed assembly of single-walled carbon nanotubes (SWCNTs) at lithographically defined positions on gate oxide surfaces, allowing for the high yield ( approximately 90%) and parallel fabrication of SWCNT device arrays. SWCNTs were first chemically functionalized through diazonium
Tumor necrosis factor-alpha (TNF) is involved in the generation of inflammatory and neuropathic pain. The synthetic hydroxamic acid based metalloprotease inhibitor TAPI blocks cleavage of cell surface TNF and thus reduces levels of the mature 17-kDa TNF polypeptide in activated macrophages and
The binding constants and rate constants for desorption of the modified molecular dye [Ru(bpy)3]2+ anchored by either phosphonate or hydroxamate on the bipyridine ligand to anatase TiO2 and WO3 have been measured. In aqueous media at pH 1-10, repulsive electrostatic interactions between the
OBJECTIVE
Hydroxamic-and carboxylic-acid based matrix metalloproteinase inhibitors (MMPIs) were compared for their potency against various MMPs, pharmacodynamic properties and in vivo efficacy in a model of cartilage degeneration.
METHODS
The MMPIs were evaluated for their ability to inhibit human
Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurological disorder caused by a CAG repeat expansion in the DRPLA gene encoding polyglutamine (polyQ). Although previous experimental studies have demonstrated that histone deacetylase (HDAC) inhibitors are therapeutically