9 resultaten
Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in insulin secretion by pancreatic beta-cells. The most compelling evidence of this comes from features of the hyperinsulism/hyperammonemia (HI/HA) syndrome where a dominant mutation causes the loss of inhibition by GTP, and from
Hyperammonemia is a major pathophysiological factor in encephalopathies associated with acute and chronic liver failure. On mouse brain slice preparations we analyzed the effects of ammonium on the characteristics of corticostriatal long-term potentiation (LTP) induced by high-frequency electrical
Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)(+) as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently
Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the
Insulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a
Chlorogenic acids (CGAs) are a group of phenolic compounds found in worldwide consumed beverages such as coffee and green tea. They are synthesized from an esterification reaction between cinnamic acids, including caffeic (CFA), ferulic and p-coumaric acids with quinic acid (QA), forming several
Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased
Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and
Hyperammonemia is a major pathophysiological factor in encephalopathies associated with acute and chronic liver failure. On mouse brain slice preparations, we analyzed the effects of ammonia on the characteristics of corticostriatal long-term depression (LTD) induced by electrical stimulation of