Bladzijde 1 van 66 resultaten
The amino-acid sequence of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Zea mays has been determined by alignment of peptides generated by digestion with trypsin, chymotrypsin, staphylococcal protease and thermolysin. The protein-chemically determined structure is in
The lack of complete Rubisco kinetic data for numerous species is partly because of the time consuming nature of the multiple methods needed to assay all of the Rubisco parameters. We have developed a membrane inlet mass spectrometer method that simultaneously determines the rate of Rubisco
Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function
In plants, lateral roots play a crucial role in the uptake of water and nutrients. Several genes such as Zea mays Haem Oxygenase-1 (ZmHO-1) and Giberellic Acid-Stimulated Like-1 (ZmGSL-1) have been found to be involved in lateral root development. In the present investigation, we observed that heat
Sunflower (Helianthus annuus L. cv Asmer) and maize (Zea mays L. cv Eta) plants were grown under controlled environmental conditions with a nutrient solution containing 0, 0.5, or 10 millimolar inorganic phosphate. Phosphate-deficient leaves had lower photosynthetic rates at ambient and saturating
We quantified the ozone impact on levels of Zea mays L. cv. Chambord mRNAs encoding C4-phosphoenolpyruvate carboxylase (C4-PEPc), ribulose-l,5-bisphosphate carboxylase/oxygenase small and large subunits (Rubisco-SSU and Rubisco-LSU, respectively) and Rubisco activase (RCA) using real-time RT-PCR.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) biosynthesis is a multi-step process in which specific chaperones are involved. Recently, a novel polypeptide, Rubisco Accumulation Factor 1 (RAF1), has been identified as a protein that is necessary for proper assembly of this enzyme in
Maize (Zea mays L. cv Golden Cross Bantam T51) seedlings were grown under full sunlight or 50% sunlight in a temperature-controlled glasshouse at the temperatures of near optimum (30/25 degrees C) and suboptimum (17/13 degrees C) with seven levels of nitrate-N (0.4 to 12 millimolars). The contents
Several cDNAs encoding ribulose-1,5-bisphosphate carboxylase/oxygenase activase (Rubisco activase, RCA) were isolated from a maize (Zea mays L.) leaf cDNA library. Although all the cDNAs encoded the same polypeptide, the RCA beta isoform, they showed two different downstream-like elements (DST-like)
In addition to the synthesis of ketolacids the enzyme acetolactate synthase shows an oxygen-consuming side reaction. Partially purified acetolactate synthase from corn (Zea mays L.) and barley (Hordeum vulgare L.) exhibits chemiluminescence in the presence of oxygen, Mn2+ and low concentrations of
Heme oxygenase (HO) performs the rate limiting step in heme degradation and is induced by cell injury or stress. We wished to determine if dietary fatty acid composition, increased age and/or an induced oxidative stress would alter the expression of HO-1 (constitutive and inducible isozyme) or of
The aim of this study was to quantify the effect of the pollutant, trifluoroacetate (TFA), on growth and photosynthesis of Phaseolus vulgaris (C(3)) and Zea mays (C(4)) in order to elucidate the physiological and biochemical basis of its inhibitory action. In whole plant studies, photosynthetic gas
The fungus Fusarium graminearum (sexual stage Gibberella zeae) causes ear rot of maize (Zea mays) and contamination with the 8-ketotrichothecenes nivalenol (1) or 4-deoxynivalenol (2), depending on diversity of the fungal population for the 4-oxygenase gene (TRI13). To determine the importance of 1
Previous work has established the marked potentiation of CCl4 hepatoxicity by prior exposure to chlordecone (CD). This study was conducted to determine if prior exposure to CD results in enhancement of CCl4-induced destruction of the hepatic microsomal mixed-function oxygenase (MFO) system. Male
OBJECTIVE
To investigate the protective role of heme oxygenase-1 and its reaction product, carbon monoxide against acute liver injury induced by carbon tetrachloride in rats.
METHODS
Thirty male Sprague-Dawley rats were randomly divided into six groups with five in each. The control group received a