6 resultaten
Arbuscular mycorrhizal (AM) fungi have been used to alleviate heavy metal stress on plant growth and uptake of micro- and macroelements. A greenhouse pot experiment was conducted to verify the effects of AM fungus Rhizophagus irregularis on the growth, physiological characteristics, total Cd, and
Few relevant research attempts have been made to determine heavy metal resistance mechanisms of rhizomatous perennial plants. Thus, it is pertinent to investigate the physiological and biochemical changes in Phragmites australis under metal-stressed conditions to facilitate the development of
Phragmites communis has a long history in Songnen grassland of China and has a series of biological, ecological as well as genetic characteristics contributing to its adaptation to the specific local climatic and edaphic conditions. The aim of the present study was to investigate the ions balance
The salt and alkali contents were so high that the ecological landscape was depressed in water body of a coastal estuary area. Screening some plants which could not only tolerate saline-alkaline but also effectively remove nitrogen and phosphorus was therefore in urgent need. The tolerance range and
Phragmites australis, which is widely distributed throughout the world, is often used in the phytoremediation of acid mine drainage (AMD) due to its various mechanisms for survival under extremely harsh conditions. To explore the different responses of different aerial organs of P. australis to
TiO2 nanoparticles (TiO2NPs) is one of the most widely used nanomaterials. Arbuscular mycorrhizal fungi (AMF) are an important and widely distributed group of soil microorganisms, which promote the absorption of nutrients by host plants and increase their tolerance to