Bladzijde 1 van 33 resultaten
The culture filtrate of a fungus isolated from decaying Picea glauca wood and tentatively identified as Oidiodendron cf. truncatum showed strong antibiotic activity against the pathogenic yeast, Candida albicans. Four new tetranorditerpenoids, oidiodendrolides A (3), B (4), and C (5) and
The complexity of ecological conditions in urban areas imposes the plant species need for the development of various biochemical and physiological adaptive strategies. The aim of our research was to examine the antioxidative and antifungal metabolism of species Pinus nigra, Picea omorika, Tilia
Ectomycorrhizal fungi can produce antifungal compounds in vitro as well as in symbiosis with the host plant that can reduce root diseases. The objective of this study was to isolate antifungal compounds from culture filtrate of Paxillus sp. 60/92, which can form mycorrhizas with Picea glehnii
A novel basic protein with antifungal activity was isolated from the seeds of Ginkgo biloba and purified to homogeneity. The protein inhibited the growth of some fungi (Fusarium oxysporum, Trichoderma reesei, and Candida albicans) but did not exhibit antibacterial action against Escherichia coli.
A new C-methylated flavone glycoside, 5,7-dihydroxy-3-methoxy-6-C-methylflavone 8,4'-di-O-β-D-glucopyranoside (1), was isolated from the twigs and leaves of Picea neoveitchii Mast, together with eight known compounds, 5,7,8,4'-tetrahydroxy-3-methoxy-6-methylflavone 8-O-β-D-glucopyranoside (2)
The current study focuses on the analysis of in vitro biological activity of extract from bark of Norway spruce (Picea Abies), which can find potential application in food and cosmetic industry and pharmacology. Milled bark was subjected to Soxhlet extraction and supercritical fluid extraction to
A novel single-chained antifungal protein with a molecular weight of 13 kDa displaying an N-terminal sequence with marked similarity to embryo-abundant protein from the white spruce was isolated from the seeds of Ginkgo biloba using ion exchange chromatography on DEAE-cellulose, affinity
The genus Diaporthe comprises close to 800 species, with around 2000 names attributed to it and its asexual morphs previously recognized in Phomopsis. Diaporthe species are common plant associates, including saprotrophs, pathogens, and endophytes affiliated with a diverse range of hosts worldwide.
BACKGROUND
Plant defensins represent a major innate immune protein superfamily that displays strong inhibitory effects on filamentous fungi. The total number of plant defensins in a conifer species is unknown since there are no sequenced conifer genomes published, however the genomes of several
The mycorrhization helper bacterium Streptomyces sp. AcH 505 inhibits Norway spruce root infection and colonisation by the root and butt rot fungus Heterobasidion annosum 005 but not by the congeneric strain Heterobasidion abietinum 331 because of higher sensitivity of H. annosum 005 towards the AcH
Four flavonoids, 5,7,4'-trihydroxy-3,8,-dimethoxy-6-C-methylflavone (1), 5,8,4'-trihydroxy-3,7-dimethoxy-6-C-methylflavone (2), 7-methoxy-6-C-methylkaempferol (3) and kaempferol-7-O-(2″-E-p-coumaroyl)-α-l-arabinofuranoside (4), together with 15 known compounds, were isolated from the twigs and
The potential protection of Picea glehnii seedlings from damping-off by seed-epiphytic Penicillium species was investigated. We studied the chemical response of seed-epiphytic Penicillium species (Pen. cyaneum, Pen. damascenum, and Pen. implicatum) to Pythium vexans, a damping-off fungus, in vitro.
Resins (rosin, pitch) are natural products of the coniferous trees and are antimicrobial against a wide range of microbes. The antifungal effectiveness of resin, purified from Norway spruce (Picea abies), was studied against human pathogenic fungi and yeasts with the agar plate diffusion tests and
The necrotrophic fungus Heterobasidion spp. is the causal agent of 'annosum root rot' of Norway spruce. In the presence of the rhizosphere bacterium Streptomyces AcH 505, enhanced colonization of Norway spruce roots with Heterobasidion abietinum 331 has previously been observed. By analyzing dual
This study reports for the first time promising antibacterial and antifungal effects of epidihydropinidine, the major piperidine alkaloid in the needles and bark of Norway spruce, Picea abies (L.) Karsten. Epidihydropinidine was growth inhibitory against all bacterial and fungal strains used in our