Bladzijde 1 van 120 resultaten
Homogentisate solanesyl transferase (HST) catalyzes the prenylation and decarboxylation of homogentisate to form 2-methyl-6-solanesyl-1,4-benzoquinol, the first intermediate in plastoquinone-9 biosynthesis. In vitro, HST from Spinacia oleracea L., Arabidopsis thaliana, and Chlamydomonas reinhardtii
A cDNA of Chlamydomonas reinhardtii encoding a plastidial homogentisate prenyltransferase was identified. Functional expression studies in Escherichia coli revealed that the enzyme possessed properties similar to the prenyltransferase of Arabidopsis thaliana encoded by At3g11950 but different from
Chlororespiration has been defined as a respiratory electron transport chain in interaction with photosynthetic electron transport involving both non-photochemical reduction and oxidation of plastoquinones. Different enzymatic activities, including a plastid-encoded NADH dehydrogenase complex, have
Isochorismate synthase 1 (ICS1) is a crucial enzyme in the salicylic acid (SA) synthesis pathway, and thus it is important for immune defences. The ics1 mutant is used in experiments on plant-pathogen interactions, and ICS1 is required for the appropriate hypersensitive disease defence response.
Photosynthesis produces organic carbon via a light-driven electron flow from H2O to CO2 that passes through a pool of plastoquinone molecules. These molecules are either present in the photosynthetic thylakoid membranes, participating in photochemistry (photoactive pool), or
We have described a direct, high-performance liquid chromatography-based method of estimation of the total level of plastoquinone (PQ) in leaves, the redox state of total (photoactive and non-photoactive) PQ, as well as the redox state of the PQ-pool that is applicable to any illumination
Photosynthesis produces organic carbon via a light-driven electron flow from H2O to CO2 that passes through a pool of plastoquinone molecules. These molecules are either present in the photosynthetic thylakoid membranes, participating in photochemistry (photoactive pool), or
The plastoquinone (PQ) pool mediates electron flow and regulates photoacclimation in plants. Here we report the action spectrum of the redox state of the PQ pool in Arabidopsis thaliana, showing that 470-500, 560 or 650-660 nm light favors Photosystem II (PSII) and reduces the PQ pool whereas
DNA microarray technology was applied to gain insight into the role of the redox state of PQ pool as a retrograde factor mediating differential expression of Arabidopsis nuclear genes during the acclimation to changing irradiance. DNA microarray chips containing probes corresponding to 24,000
Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5
Phylloquinone, a substituted 1,4-naphthoquinone with an 18-carbon-saturated phytyl tail, functions as a bound one-electron carrier cofactor at the A1 site of photosystem I (PSI). A Feldmann tag line mutant, no. 2755 (designated as abc4 hereafter), showed pale-green young leaves and white old leaves.
Plastoquinone plays critical roles in photosynthesis, chlororespiration and carotenoid biosynthesis. The previously isolated pds2 mutant from Arabidopsis was deficient in tocopherol and plastoquinone accumulation, and the biochemical phenotype of this mutant could not be reversed by externally
Plastoquinone-9 (PQ-9) is essential for plant growth and development. Recently, we found that fibrillin5 (FBN5), a plastid lipid binding protein, is an essential structural component of the PQ-9 biosynthetic pathway in Arabidopsis. To investigate the functional conservation of FBN5 in monocots and
The redox state of plastoquinone-pool in chloroplasts is crucial for driving many responses to variable environment, from short-term effects to those at the gene expression level. In the present studies, we showed for the first time that the plastoquinone-pool undergoes relatively fast oxidation
Carotenoids are C40 tetraterpenoids synthesized by nuclear-encoded multienzyme complexes located in the plastids of higher plants. To understand further the components and mechanisms involved in carotenoid synthesis, we screened Arabidopsis for mutations that disrupt this pathway and cause