Norwegian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drug Metabolism and Disposition 2009-Jul

Human arylacetamide deacetylase is a principal enzyme in flutamide hydrolysis.

Bare registrerte brukere kan oversette artikler
Logg inn Registrer deg
Koblingen er lagret på utklippstavlen
Akinobu Watanabe
Tatsuki Fukami
Miki Nakajima
Masataka Takamiya
Yasuhiro Aoki
Tsuyoshi Yokoi

Nøkkelord

Abstrakt

Flutamide, an antiandrogen drug, is widely used for the treatment of prostate cancer. The initial metabolic pathways of flutamide are hydroxylation and hydrolysis. It was recently reported that the hydrolyzed product, 4-nitro-3-(trifluoromethyl)phenylamine (FLU-1), is further metabolized to N-hydroxy FLU-1, an assumed hepatotoxicant. However, the esterase responsible for the flutamide hydrolysis has not been characterized. In the present study, we found that human arylacetamide deacetylase (AADAC) efficiently hydrolyzed flutamide using recombinant AADAC expressed in COS7 cells. In contrast, carboxylesterase1 (CES1) and CES2, which are responsible for the hydrolysis of many drugs, could not hydrolyze flutamide. AADAC is specifically expressed in the endoplasmic reticulum. Flutamide hydrolase activity was highly detected in human liver microsomes (K(m), 794 +/- 83 microM; V(max), 1.1 +/- 0.0 nmol/min/mg protein), whereas the activity was extremely low in human liver cytosol. The flutamide hydrolase activity in human liver microsomes was strongly inhibited by bis-(p-nitrophenyl)phosphate [corrected], diisopropylphosphorofluoride, and physostigmine sulfate (eserine) but moderately inhibited by sodium fluoride, phenylmethylsulfonyl fluoride, and disulfiram. The same inhibition pattern was obtained with the recombinant AADAC. Moreover, human liver and jejunum microsomes showing AADAC expression could hydrolyze flutamide, but human pulmonary and renal microsomes, which do not express AADAC, showed slight activity. In human liver microsomal samples (n = 50), the flutamide hydrolase activities were significantly correlated with the expression levels of AADAC protein (r = 0.66, p < 0.001). In conclusion, these results clearly showed that flutamide is exclusively hydrolyzed by AADAC. AADAC would be an important enzyme responsible for flutamide-induced hepatotoxicity.

Bli med på
facebooksiden vår

Den mest komplette databasen med medisinske urter støttet av vitenskap

  • Fungerer på 55 språk
  • Urtekurer støttet av vitenskap
  • Urtegjenkjenning etter bilde
  • Interaktivt GPS-kart - merk urter på stedet (kommer snart)
  • Les vitenskapelige publikasjoner relatert til søket ditt
  • Søk medisinske urter etter deres effekter
  • Organiser dine interesser og hold deg oppdatert med nyheter, kliniske studier og patenter

Skriv inn et symptom eller en sykdom og les om urter som kan hjelpe, skriv en urt og se sykdommer og symptomer den brukes mot.
* All informasjon er basert på publisert vitenskapelig forskning

Google Play badgeApp Store badge