Strona 1 od 289 wyniki
* Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to
The experiments were carried out with maize (Zea mays L.) seedlings, hybrid Kneja 530, grown hydroponically in a growth chamber. Twelve-day-old plants were foliar treated with putrescine, N1-(2-chloro-4-pyridyl)-N2-phenylurea (4-PU-30), and abscisic acid (ABA) at concentrations of 10(-5) m.
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to
Several different types of proteins that are modulated by abscisic acid (ABA) accumulate in developing embryos of maize (Zea mays L.). Some of these proteins are specific to the developing seed, such as the storage globulin, GLB1, whereas others are involved in general responses to water deficit.
We previously demonstrated that amounts of Cat1 RNA in developing immature maize (Zea mays L.) embryos change in parallel with endogenous abscisic acid (ABA) content. In excised immature embryos, addition of ABA leads to a large increase in Cat1 RNA accumulation. The Cat1 transcript, however, also
Previous work showed that the concentration of proline (Pro) increases greatly in the primary root tip of maize (Zea mays L.) at low water potentials ([psi]w). It was also shown that the maintenance of root elongation at low [psi]w depends on increased levels of abscisic acid (ABA). In this study we
Plant responses to drought stress include proline and abscisic acid (ABA) accumulation. Proline dehydrogenase (PDH) (EC 1.4.3) is the first enzyme in the proline oxidation pathway, and its activity has been shown to decline in response to water stress (PJ Rayapati, CR Stewart [1991] Plant Physiol
The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of
Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch.
We have earlier identified a set of proteins of 23 to 25 kilodaltons (kD), covering an isoelectric point (pI) range of 6.2 to 8.2, which accumulate gradually during normal embryogenesis of Zea mays and disappear in early germination. These polypeptides can be induced prematurely in immature embryos
Ten-d-old seedlings of Zea mays L. cv. Tx 5855 treated with 1-methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4-(1H)-pyridinone (Fluridone) were analyzed for abscisic acid (ABA) content using high-performance liquid chromatography with an analysis sensitivity of 2.5 ng ABA g-1 fresh weight (FW).
Ten-d-old seedlings of Zea mays L. cv. Tx 5855 treated with 1-methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4-(1H)-pyridinone (Fluridone) were analyzed for abscisic acid (ABA) content using high-performance liquid chromatography with an analysis sensitivity of 2.5 ng ABA g(-1) fresh weight (FW).
Previous labeling experiments with (18)O(2) have supported the hypothesis that stress-induced abscisic acid (ABA) is synthesized through an indirect pathway involving an oxygenated carotenoid (xanthophyll) as a precursor. To investigate ABA formation under nonstress conditions, an (18)O(2) labeling
The role of mitogen-activated protein kinase (MAPK) in abscisic acid (ABA)-induced antioxidant defense was investigated in leaves of maize (Zea mays) plants. Treatments with ABA or H(2)O(2) induced the activation of a 46-kD MAPK and enhanced the expression of the antioxidant genes CAT1, cAPX, and
Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA.