Strona 1 od 31 wyniki
Brachydactyly type B (BDB) is an autosomal dominant skeletal disorder characterized by hypoplasia/aplasia of distal phalanges and nails. Recently, heterozygous mutations of the orphan receptor tyrosine kinase (TK) ROR2, located within a distinct segment directly after the TK domain, have been shown
Inherited limb malformations provide a valuable resource for the identification of genes involved in limb development. Brachydactyly type B (BDB), an autosomal dominant disorder, is the most severe of the brachydactylies and characterized by terminal deficiency of the fingers and toes. In the
Hoxa and Hoxd genes, related to the Drosophila Abd-B gene, display regionally restricted expression patterns and are necessary for the formation of the limb skeletal elements. Hox genes encode transcription factors, which are supposed to control the expression of a series of downstream target genes,
Mutations in the receptor tyrosine kinase Ror2 account for Brachydactyly type B and Robinow Syndrome. We have identified two novel factors interacting with the Ror2 intracellular domain. TAK1 (TGF-beta activated kinase 1), a MAP3K, interacts with Ror2 and phosphorylates its intracellular
The mammalian Ror family receptor tyrosine kinases, Ror1 and Ror2, play crucial roles in developmental morphogenesis. Although the functions of Ror1 and Ror2 are redundant, Ror2 exhibits more specific functions during development. We show that when expressed in mammalian cells, Ror2, but not Ror1,
Brachydactyly type B (BDB) is characterized by terminal deficiency of fingers and toes, which is caused by heterozygous truncating mutations in the receptor tyrosine kinase-like orphan receptor 2 (ROR2) in the majority of patients. In a subset of ROR2-negative patients with BDB, clinically defined
Receptor tyrosine kinases (RTKs) play crucial roles in various developmental processes. Ror-family RTKs are characterized by the intracellular tyrosine kinase domains, highly related to those of the Trk-family RTKs, and by the extracellular Frizzled-like cysteine-rich domains (CRDs) and Kringle
Mutations in ROR2, encoding the receptor tyrosine kinase-like orphan receptor 2, cause two distinct skeletal diseases: autosomal dominant brachydactyly type B1 (BDB1) and autosomal recessive Robinow syndrome. In a large Chinese family with a limb phenotype, consisting of atypical BDB1 and cutaneous
We report on an autosomal dominant syndrome consisting of unique corneal epithelial changes, diffuse palmoplantar hyperkeratosis, distal onycholysis, brachydactyly, short stature, premature birth, and dental problems. This condition has been present in seven persons in three generations of one
Brachydactyly type B, an autosomal dominant disorder that is characterized by hypoplasia of the distal phalanges and nails, can be divided into brachydactyly type B1 (BDB1) and brachydactyly type B2 (BDB2). BDB1 is caused by mutations in the receptor tyrosine kinase gene ROR2, which maps to
Autosomal dominant brachydactyly (BD) is a skeletal disorder with several subtypes, including brachydactyly type A1 (BDA1) and brachydactyly type B1 (BDB1). Mutations in Indian hedgehog (IHH) are usually associated with BDA1, whereas heterozygous mutations in receptor tyrosine kinase-like orphan
Elongation of the digit rays resulting in the formation of a defined number of phalanges is a process poorly understood in mammals, whereas in the chicken distal mesenchymal bone morphogenetic protein (BMP) signaling in the so-called phalanx-forming region (PFR) or digit crescent (DC) seems to be
Bovine interdigital hyperplasia (IH) is a typical disease of the foot with varying prevalence depending on age, breed, and environmental factors resulting in different degrees of lameness. In studies based on assessments of claw health status at time of hoof trimming and applying genetic-statistical
BACKGROUND
The noncanonical Wnt receptor and tyrosine kinase Ror2 has been associated with recessive Robinow syndrome (RRS) and dominant brachydactyly type B1. The phenotypes of mouse mutants implicate Ror2 in the development of the heart, lungs, bone, and craniofacial structures, which are affected
Brachydactyly type B1 (BDB1), an autosomal dominant condition characterized by terminal deficiency of the fingers and toes, results from mutations in the gene ROR2 encoding a receptor tyrosine kinase. In addition to BDB1, mutations in the gene ROR2 also cause a more severe form of skeletal