Strona 1 od 25 wyniki
Cannabinoids are multitarget substances. Currently available are dronabinol (synthetic delta-9-tetrahydrocannabinol, THC), synthetic cannabidiol (CBD) the respective substances isolated and purified from cannabis, a refined extract, nabiximols (THC:CBD = 1.08:1.00); and nabilone, which is also
The efficacy of cannabinoids against high-grade glioma in animal models, mediated by two specific receptors, CB1 and CB2, raised promises for targeted treatment of the most frequent and malignant primary brain tumors. Unlike the abundantly expressed CB1, the CB2 receptor shows a restricted
OBJECTIVE
To conduct a comprehensive search of the peer-reviewed literature to assess risk of cannabis-related mortality.
METHODS
Systematic peer-reviewed literature searches were conducted in Medline, EMBASE and PsycINFO to identify data on mortality associated with cannabis use. Search strings for
Astrocytomas, the most prevalent primary brain tumors, can be divided by histology and malignancy levels into four following types: pilocytic astrocytoma (grade I), diffuse fibrillary astrocytoma (grade II), anaplastic astrocytoma (grade III), and glioblastoma multiforme (grade IV). For high grade
Background: Primary CNS tumors constitute a heterogeneous group of neoplasms that share a considerable morbidity and mortality rate. To help control tumor growth and clinical outcomes (overall survival, progression-free survival, quality
Cannabinoids bind to two G-protein-coupled receptors, CB1 and CB2, expressed by neurons and cells of the immune system, respectively. Glioma cells (astrocyte-derived brain tumor cells) express cannabinoid receptors, and numerous in vitro and in vivo studies performed in rodents have concluded that
Dexanabinol, HU-211, a synthetic cannabinoid devoid of psychotropic effects, improves neurological outcome in models of brain trauma, ischemia and meningitis. Recently, HU-211 was found to inhibit brain tumor necrosis factor (TNFalpha) production after head injury. In the present study, we
Gliomas are the most important group of malignant primary brain tumors and one of the most aggressive forms of cancer. During the last years, several studies have demonstrated that cannabinoids induce apoptosis of glioma cells and inhibit angiogenesis of gliomas in vivo. As the effects of
In Minnesota, medical cannabis was approved for use in 2014. From July 2015 to February 2019, our center certified 103 pediatric and young adult patients for the use of medical cannabis under the qualifying conditions of cancer and treatment-related symptoms. Here, we provide a review of the
The type 2 cannabinoid receptor (CB2R) plays a vital role in carcinogenesis and progression and is emerging as a therapeutic target for cancers. However, the exact role of CB2R in cancer progression and therapy remains unclear. This has driven the increasing efforts to study CB2R and cancers using
Cannabinoids, the active components of Cannabis sativa (marijuana), and their derivatives produce a wide spectrum of central and peripheral effects, some of which may have clinical application. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has
Gliomas, in particular glioblastoma multiforme or grade IV astrocytoma, are the most frequent class of malignant primary brain tumours and one of the most aggressive forms of cancer. Current therapeutic strategies for the treatment of glioblastoma multiforme are usually ineffective or just
The last quarter century has borne witness to great advances in both the detection and treatment of numerous cancers. Even so, malignancies of the central nervous system, especially high-grade astrocytomas, continue to thwart our best efforts toward effective chemotherapeutic strategies. With
Gliomas constitute the most frequent and malignant primary brain tumors. Current standard therapeutic strategies (surgery, radiotherapy and chemotherapeutics, e.g., temozolomide, carmustin or carboplatin) for their treatment are only palliative and survival diagnosis is normally 6-12 months. The
Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by