Strona 1 od 16 wyniki
Leaf discs and detached leaves exposed to l-cysteine emitted a volatile sulfur compound which was proven by gas chromatography to be H(2)S. This phenomenon was demonstrated in all nine species tested (Cucumis sativus, Cucurbita pepo, Nicotiana tabacum, Coleus blumei, Beta vulgaris, Phaseolus
Transgenic tobacco (Nicotiana tabacum L.) plants carrying a fusion between the nopaline synthase (nos) promoter and chloramphenicol acetyltransferase (CAT) reporter gene (caf) were tested for their response to treatment with H2O2. The nos promoter-driven CAT activity increased significantly by
Sulfate transport by tobacco (Nicotiana tabacum L. var. Xanthi) cells cultured on either l-cysteine or sulfate as a sole sulfur source was measured. The transport rate on either sulfur source was low during pre-exponential growth, increased during exponential growth, and was maximal in late
Isoprenylation is a posttranslational modification that is believed to be necessary, but not sufficient, for the efficient association of numerous eukaryotic cell proteins with membranes. Additional modifications have been shown to be required for proper intracellular targeting and function of
The swelling of mitochondria isolated from leaves, roots, and callus tissues of Nicotiana tabacum, L, var. White Gold, was measured by following changes in optical density at 520 mmu in buffered 0.25 m sucrose or 0.125 m KCl. Ozone induced rapid swelling of the isolated mitochondria and increased
Five clones were isolated from five different amino acid analog-resistant Daucus carota L. var. Sativa and Nicotiana tabacum L. cv. Xanthi cell lines. The individual clones were similar in their resistance to dl-5-methyltryptophan, S-(2-aminoethyl)-l-cysteine, or azetidine-2-carboxylic acid, and in
Hydrogen sulfide (H2S) acts as a signal to induce many physiological processes in plants, but its role in controlling the biosynthesis of secondary metabolites is not well established. In this study, we found that high temperature (HT) treatment induced nicotine biosynthesis in tobacco (Nicotiana
Cystathionine gamma-synthase, the enzyme catalysing the first reaction specific for methionine biosynthesis, has been cloned from Nicotiana tabacum, overexpressed in Escherichia coli and purified to homogeneity. The recombinant cystathionine gamma-synthase catalyses the pyridoxal 5'-phosphate
Cystathionine gamma-synthase catalyses the committed step of de novo methionine biosynthesis in micro-organisms and plants, making the enzyme an attractive target for the design of new antibiotics and herbicides. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum has been
In this study, we optimized a method for the determination of free amino acids in Nicotiana tabacum leaves. Capillary electrophoresis with contactless conductivity detector was used for the separation of 20 proteinogenic amino acids in acidic background electrolyte. Subsequently, the conditions of
Serine acetyltransferase (SATase) and cysteine synthase (O-acetylserine (thiol)-lyase) (CSase) are committed in the final step of cysteine biosynthesis. Six cDNA clones encoding SATase have been isolated from several plants, e.g. watermelon, spinach, Chinese chive and Arabidopsis thaliana.
Cysteine synthase [O-acetyl-L-serine(thiol)-lyase, EC 4.2.99.8] (CSase), which is responsible for the terminal step of cysteine biosynthesis, catalyzes the formation of L-cysteine from O-acetyl-L-serine (OAS) and hydrogen sulfide. Three T-DNA vectors carrying a spinach (Spinacia oleracea)
By applying a mutagenesis/selection procedure to obtain resistance to a lysine analog, S-(2-aminoethyl)L-cysteine (AEC), a lysine overproducing mutant in Nicotiana sylvestris was isolated. Amino acid analyses performed throughout plant development and of different organs of the N. sylvestris RAEC-1
Two S-(2-aminoethyl)L-cysteine (AEC) resistant lines were isolated by screening mutagenized protoplasts from diploid N. sylvestris plants. Both lines accumulated free lysine at levels 10 to 20-fold higher than in controls. Lysine overproduction and AEC-resistance were also expressed in plants
Salinity is one of the abiotic factors that most affect crop growth and production. This study focused on the effect of high salinity on the endogenous levels of the signaling molecules hydrogen sulfite (H2S) and nitric oxide (NO) in Nicotiana tabacum leaves and the extent of these for the