14 wyniki
Garlic and its water-soluble allyl sulfur-containing compound, S-Allyl-L-cysteine Sulfoxide (ACSO), have shown antioxidant and anti-inflammatory activities, inhibiting the development of atherosclerosis. However, little is known about the mechanism(s) underlying the therapeutic effect of ACSO in
Colorectal cancer is one among the most common cancers in the world and a major cause of cancer related deaths. Similar to other cancers, colorectal carcinogenesis is often associated with over expression of genes related to cell growth and proliferation, especially Epidermal Growth Factor Receptor
To examine the anticancer effects of S-allyl-L-cysteine (SAC) in human bladder cancer cells and to identify possible molecular mechanisms, bladder cancer cell lines (HTB5, HTB9, JON, UMUC14, T24, and cisplatin resistant-T24R2) were incubated with SAC, and cell proliferation was measured using the
Aged garlic extract (AGE) has been demonstrated to have therapeutic properties in tumors; however its mechanisms of action have not yet been fully elucidated. A previous study revealed that AGE exerts an anti-proliferative effect on a panel of both sensitive [wild-type (WT)] and multidrug-resistant
The S-Allyl-L-cysteine (SAC) component of aged garlic extract (AGE) is proven to have anticancer, antihepatotoxic, neuroprotective and neurotrophic properties. -Cystathionase (CTH), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) are involved in
It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium
Alzheimer's disease (AD) is the most common form of dementia in the older people and 7(th) leading cause of death in the United States. Deposition of amyloid-beta (Aβ) plaques, hyperphosphorylation of microtubule associated protein tau (MAPT), neuroinflammation and cholinergic neuron loss are the
Allicin (diallyl thiosulfinate), a highly active component in extracts of freshly crushed garlic, is the interaction product of non-protein amino acid alliin (S-allyl-L-cysteine sulfoxide) with the enzyme alliinase (alliin lyase; EC 4.4.1.4). Allicin was shown to be toxic in various mammalian cells
Clinical chemoprevention trials of more than 30 agents and agent combinations are now in progress or being planned. The most advanced agents are well known and are in large Phase III chemoprevention intervention trials or epidemiological studies. These drugs include several retinoids [e.g., retinol,
OBJECTIVE
The aim of this study was to evaluate the effect of the synthetic S-allyl-L-cysteine (SAC) PMK-S005 on gastric acid secretion, inflammation, and antioxidant enzymes in aging rats.
METHODS
The rats were divided into four groups at 31 weeks of age and were continuously fed a diet containing
Numerous studies on the biological mechanism of breast cancer have identified a number of potential therapeutic molecular targets. In this context, one type of potential candidates appears to be agents that target the actin cytoskeleton of cancer cells or regulate actin cytoskeleton dynamics. The
Pollution, unhygienic conditions and organic waste are detrimental to human health. On the contrary, animals living in polluted environments, feeding on organic waste and exposed to noxious agents such as heavy metals must possess remarkable properties against contracting diseases. Species such as
Several cysteine S-conjugates that occur in extracts of garlic and other plants of the allium family possess anti-oxidant properties, and many, including S-allyl-L-cysteine (SAC) and S-allylmercapto-L-cysteine (SAMC), are promising anti-cancer agents. To understand possible biochemical mechanisms
Molecular investigations support existing clinical and epidemiological data that garlic-derived allylsulfides reduce cancer risk. Various allylsulfides can diminish progression of cancer cells at either the G1/S or G2/M phase. Allylsulfide derivatives modify redox-sensitive signal pathways and cause