Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The Bangkok medical journal 2015-Sep

Advances in Imaging: Brain Tumors to Alzheimer's Disease.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Rameshwar Patil
Yosef Koronyo
Alexander V Ljubimov
Brenda Salumbides
Adam Mamelak
Pallavi R Gangalum
Hui Ding
Jose Portilla-Arias
Eggehard Holler
Pramod Butte

Palavras-chave

Resumo

Professor Black and colleagues have been working to improve the quality and sensitivity of imaging in the early detection of conditions from brain tumors to Alzheimer's disease to enhance treatment protocols and patient management. Professor Black et al introduced nanoparticles to improve MRI imaging. These nanoparticles consist of poly (b-L- malic acid (PMLA)) conjugates with monoclonal antibodies ((mAbs)) and Gd-DOTA. These are known as MRI nano-imaging agents (NIA). Most importantly, they can penetrate the endothelial blood-brain barrier (BBB) to reach brain tumors (primary or metastasis). This is effective in cases of brain tumors or breast cancer or other cancers such as lung cancer and gastric cancer having HER2 and/or EGFR positive crossing BBB. By the covalent conjugation of MR contrast (NIA), the MRI virtual biopsy can differentiate brain tumors from infections or other brain pathological conditions. The brain's intrinsic natural fluorescence such as NADH, FAD, lipopigments and porphyrin in the brain tissue can be identified by using time resolved fluorescence spectroscopy (TRFS) which is operated through the use of ultra-short laser. TRFS produces various color bands to differentiate the tumor from normal brain tissue in real time and registers the data on a 3D map. This is significant, as this will provide a greatly improved assessment methodology of tissue type. Consequently, this will potentially result in shorter operation times as well as more satisfactory tumor removal. In the detection of Alzheimer disease, amyloid plaque is deposited in retina tissue (including the RGC, RNFL and inner plexiform layer) which can produce a fluorescence effect by using curcumin as a contrast. This is then shown by human retina amyloid imaging device. Immunotherapies with glatiramer acetate (GA) have been shown to reduce amyloid deposits in brain and retinal AB deposits in mice. The study of advanced imaging technology and techniques including NIA, TRFS and the detection of amyloid plaque in Alzheimer disease are very important approaches to create a new era for diagnostic and therapeutic management of brain tumors and other cancers (HER2 and/or EGFR positive). This pioneering work by Professor Black, and colleagues, gives rise to a new hope for cancer patients for targeted therapy and for immunotherapies in Alzheimer's disease.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge