Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nutritional Biochemistry 2019-Apr

CSRP3 mediates polyphenols-induced cardioprotection in hypertension.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Carole Oudot
Andreia Gomes
Valérie Nicolas
Morgane Gall
Philippe Chaffey
Cédric Broussard
Giuseppe Calamita
Maria Mastrodonato
Patrizia Gena
Jean-Luc Perfettini

Palavras-chave

Resumo

Berries contain bioactive polyphenols, whose capacity to prevent cardiovascular diseases has been established recently in animal models as well in human clinical trials. However, cellular processes and molecular targets of berries polyphenols remain to be identified. The capacity of a polyphenol-enriched diet (i.e., blueberries, blackberries, raspberries, strawberry tree fruits and Portuguese crowberries berries mixture) to promote animal survival and protect cardiovascular function from salt-induced hypertension was evaluated in a chronic salt-sensitive Dahl rat model. The daily consumption of berries improved survival of Dahl/salt-sensitive rats submitted to high-salt diet and normalized their body weight, renal function and blood pressure. In addition, a prophylactic effect was observed at the level of cardiac hypertrophy and dysfunction, tissue cohesion and cardiomyocyte hypertrophy. Berries also protected the aorta from fibrosis and modulated the expression of aquaporin-1, a channel involved in endothelial water and nitric oxide permeability. Left ventricle proteomics analysis led to the identification of berries and salt metabolites targets, including cystein and glycin-rich protein 3 (CSRP3), a protein involved in myocyte cytoarchitecture. In neonatal rat ventricular cardiomyocytes, CSRP3 was validated as a target of a berries-derived polyphenol metabolite, 4-methylcatechol sulfate, at micromolar concentrations, mimicking physiological conditions of human plasma circulation. Accordingly, siRNA silencing of CSRP3 and 4-methylcatechol sulfate pretreatment reversed cardiomyocyte hypertrophy and CSRP3 overexpression induced by phenylephrine. Our systemic study clearly supports the modulation of CSRP3 by a polyphenol-rich berries diet as an efficient cardioprotective strategy in hypertension-induced heart failure.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge