Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Genomics 2009-Jul

Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
Cécile Sabourault
Philippe Ganot
Emeline Deleury
Denis Allemand
Paola Furla

Palavras-chave

Resumo

BACKGROUND

Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges. Maintenance of such an intimate cellular partnership involves many crosstalks between the partners. To better characterize symbiotic relationships between a cnidarian host and its dinoflagellate symbionts, we conducted a large-scale EST study on a symbiotic sea anemone, Anemonia viridis, in which the two tissue layers (epiderm and gastroderm) can be easily separated.

RESULTS

A single cDNA library was constructed from symbiotic tissue of sea anemones A. viridis in various environmental conditions (both normal and stressed). We generated 39,939 high quality ESTs, which were assembled into 14,504 unique sequences (UniSeqs). Sequences were analysed and sorted according to their putative origin (animal, algal or bacterial). We identified many new repeated elements in the 3'UTR of most animal genes, suggesting that these elements potentially have a biological role, especially with respect to gene expression regulation. We identified genes of animal origin that have no homolog in the non-symbiotic starlet sea anemone Nematostella vectensis genome, but in other symbiotic cnidarians, and may therefore be involved in the symbiosis relationship in A. viridis. Comparison of protein domain occurrence in A. viridis with that in N. vectensis demonstrated an increase in abundance of some molecular functions, such as protein binding or antioxidant activity, suggesting that these functions are essential for the symbiotic state and may be specific adaptations.

CONCLUSIONS

This large dataset of sequences provides a valuable resource for future studies on symbiotic interactions in Cnidaria. The comparison with the closest available genome, the sea anemone N. vectensis, as well as with EST datasets from other symbiotic cnidarians provided a set of candidate genes involved in symbiosis-related molecular crosstalks. Altogether, these results provide new molecular insights that could be used as a starting-point for further functional genomics studies.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge