Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Ecology 1988-Apr

Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
R W Wadleigh
S J Yu

Palavras-chave

Resumo

Glutathione transferase activity towards various plant isothiocyanates was studied in larvae of the two generalists, fall armyworm [Spodoptera frugiperda (J.E. Smith)], and cabbage looper [Trichoplusia ni (Hübner)], and the specialist, velvetbean caterpillar (Anticarsia gemmatalis Hübner) using the midgut soluble fraction as enzyme source. The generalists, but not the specialist, are adapted to feeding on isothiocyanate-containing crucifers. Allyl and benzyl isothiocyanate were found to be metabolized by glutathione transferase from the two generalist species, but no activity was detected with the specialist. The transferase activity towards these allelochemicals in the cabbage looper was two- to sixfold higher than that in the fall armyworm. In all instances, activity was induced by various allelochemicals including indole 3-acetonitrile, indole 3-carbinol, flavone, xanthotoxin, and its own substrates. The induction ranged from 1.3- to 10.1-fold depending on the allelochemical, with the fall armyworm being more inducible. The transferase system of fall armyworm also metabolized another analog, 2-phenylethyl isothiocyanate, but activity can only be observed after induction. Bioassay results showed that these isothiocyanates were all toxic to the lepidopterans, causing acute toxicity in neonates and final-instar larvae. The results suggest that glutathione transferase plays an important role in the detoxification of isothiocyanates and hence food-plant adaptation in phytophagous insects.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge