Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomedical sciences instrumentation 2007

Extraction and characterization of metallic wear debris from total joint arthroplasty.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
S K Schmiedberg
L C Jones
D H Chang
D S Hungerford
C G Frondoza

Palavras-chave

Resumo

Wear debris generated from total joint arthroplasty may elicit a granulomatous and inflammatory response and has also been implicated in the development of osteolysis. Technical difficulty in retrieval and isolation of wear material from tissues has hindered the study of their physicochemical properties. The purpose of this study was to retrieve and analyze metallic wear debris from periprosthetic tissue obtained during revision arthroplasty. Tissue from six osteoarthritic patients was obtained during revision arthroplasty. The tissue was minced and then heated in a sodium dodecyl sulfate solution. Undigested tissue was incubated sequentially with papain and pepsin solutions. Metallic wear debris retrieved from the digestion procedure was analyzed by scanning electron microscopy. Wear fragments were seen as irregularly shaped flakes, splinters and polyhedral structures ranging from 1 to 100 microns in size. These structures appeared to be free from non-metallic surface-adherent material. Energy dispersion spectroscopy verified the presence of cobalt, chrome and molybdenum which comprised the implant alloy. Fatigue lines were observed on the surface suggesting brittle wear. Our technique for isolating metallic fragments facilitates the retrieval and preparation of wear debris for analysis of physicochemical properties and how wear debris interacts with cellular elements in surrounding tissue.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge