Fructan Hydrolysis Drives Petal Expansion in the Ephemeral Daylily Flower.
Palavras-chave
Resumo
Dry weight, water content, soluble carbohydrate content, and carbohydrate composition of daylily (Hemerocallis hybrid cv Cradle Song) flower petals were monitored in the 3 d leading up to full opening and in the first day of senescence. Timing of events was related to the time (hour 0) when flower expansion was 60% complete. Petal dry weight increased linearly from hour -62 (tight bud) to hour 10 (fully developed flower), then fell rapidly to hour 34 as senescence advanced. Increase in water content was proportional to dry weight increase from hour -62 to hour -14, but was more rapid as the bud cracked and the flower opened, giving an increase in fresh weight/dry weight ratio. Soluble carbohydrate was 50% of petal dry weight up to hour 10, then decreased during senescence to reach 4% by hour 34. Up until hour -14, fructan accounted for 80% of the soluble carbohydrate in the petals, whereas hexose accounted for only 2%. Fructan hydrolysis started just prior to bud crack at hour -14, reaching completion by hour 10 when no detectable fructan remained, and fructose plus glucose accounted for more than 80% of the total soluble carbohydrate. The proportion of sucrose remained constant throughout development. Osmolality of petal cell sap increased significantly during fructan hydrolysis, from 0.300 to 0.340 osmolal. Cycloheximide applied to excised buds between hour -38 and hour -14 halted both fructan hydrolysis and flower expansion. The findings suggest that onset of fructan hydrolysis, with the concomitant large increase in osmoticum, is an important event driving flower expansion in daylily.