Influence of Viburnum opulus proanthocyanidins on stress-induced gastrointestinal mucosal damage.
Palavras-chave
Resumo
Recent studies demonstrated that the proanthocyanidins (PA), the polymers of flavan-3-ols, naturally occurring plant metabolites widely available in fruits, vegetables, nuts, seeds, flowers and bark, have anti-inflammatory, anticarcinogenic, anti-allergic, antioxidant and vasodilatory actions. We hypothesized that Viburnum opulus PA (VOPA, Caprifoliaceae), due to activation of multifactorial gastrointestinal mucosal defense mechanisms, exert gastroduodenoprotective effects. The aim of the study was: 1) to investigate VOPA effects on gastroduodenal mucosal integrity and pattern of carbohydrate binding proteins and nitric oxide (NO) content in intact mucosa and that exposed to non-topical ulcerogens (stress) in rats without and with capsaicin (125 mg/kg, sc) denervation; and 2), to assess the role of activity of antioxidizing enzymes superoxide dismutase (SOD), catalase (CAT), gluthatione peroxidase (GPx) in VOPA-induced gastroduodenoprotection against water immersion and restraint stress (WRS) in rats. VOPA was administered orally in dose of 25, 50 or 75 mg/kg body weight. Gastroduodenal mucosal damage detected by routine light microscopic investigation and lectin histochemistry set, purified from plant and animal sources of Carpatian region. NO content, pro-and antioxidant system were determined by routine laboratory methods. Pretreatment with VOPA afforded gastroduodenoprotection and was accompanied by an increase in NO expression, both changes being reversed by sensory denervation, as well as by the rise of SOD, CAT activity and fall in MDA content. Our study shows that VOPA exerts a potent gastroduodenoprotective activity via an increase in endogenous NO generation, suppression of lipid peroxidation and mobilization of antioxidant activity and changes in glycoconjugate content of the gastroduodenal mucosa of rat.