Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Eye Research 1999-Jan

Protection from oxidative insult in glutathione depleted lens epithelial cells.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
O link é salvo na área de transferência
J R Reddan
F J Giblin
R Kadry
V R Leverenz
J T Pena
D C Dziedzic

Palavras-chave

Resumo

It has previously been shown that TEMPOL, n-propyl gallate and deferoxamine, compounds that limit the availability of Fe+2 and prevent the generation of hydroxyl radicals, protect cultured rabbit lens epithelial cells from H2O2-induced damage. In view of the importance of glutathione as an antioxidant and the decrease in GSH that is known to accompany most forms of cataract, we investigated whether these compounds protected cultured lens epithelial cells from H2O2 when the cells were artificially depleted of glutathione. Treatment of lens epithelial cells with 1-chloro-2,4-dinitrobenzene (CDNB), a compound that irreversibly binds to glutathione, or buthionine sulfoximine (BSO), an inhibitor of glutathione biosynthesis, reduced the glutathione content to an average of 15-20% of the control values without a concomitant increase in oxidized glutathione. Morphological changes were assessed by phase contrast and electron microscopy. In order to assess growth, cells in 5 ml serum-free MEM were exposed to an initial concentration of 0. 05 mm H2O2 (for 50,000 cells) or 2 doses of 0.5 mm H2O2 (for 800,000 cells). After exposure to H2O2, medium was replaced with MEM plus 8% rabbit serum; cells were fed on days 3 and 6 and counted on day 7. When 50,000 or 800,000 cells with decreased glutathione were exposed to 0.05 or 0.5 mm H2O2 the H2O2 was cytotoxic, whereas cells treated with H2O2 alone remained viable but showed inhibited proliferation. An unexpected finding was that cells continued to remove H2O2 from the medium at normal rates even when the GSH level was reduced. Cells treated with CDNB or BSO alone exhibited morphological and growth properties comparable to untreated cells. Cells treated with CDNB or BSO and then with H2O2 exhibited decreased cell-to-cell contact, nuclear shrinkage, and arborization when viewed with phase-contrast microscopy and showed extensive nuclear and cytoplasmic degeneration at the EM level. Cell death was determined by dye exclusion and confirmed by video microscopy. When cells were treated with CDNB or BSO and subsequently treated with TEMPOL, n-propyl gallate or deferoxamine and then challenged with H2O2 cytotoxicity was prevented and the cells were capable of growth. The data show that H2O2 was not lethal to glutathione-depleted lens epithelial cells when they were treated with compounds that prevented the generation of reactive oxygen species. In addition, the results indicate that GSH has an important protective role independent of its ability to decompose H2O2 via glutathione peroxidase.

Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge