Página 1 a partir de 29 resultados
Aconitum carmichaeli with Ampelopsis japonica (AA) is a classical traditional Chinese medicine (TCM) formula. There are a lot of examples showing that AA can be used to treat rheumatoid arthritis, but its mechanism of action is still not completely clear. In this research,
Ampelopsin (AMP) is isolated from the Chinese medicinal herb Ampelopsis grossedentata (Hand-Mazz) and has been associated with numerous biological and pharmacological activities. However, it is not clear whether AMP has a direct protective effect on cerebral ischemia reperfusion injury. Therefore,
Misfolding and fibrillogenesis of amyloid-β protein (Aβ) play a key role in the onset and progression of Alzheimer's disease (AD). Screening for inhibitors against Aβ amyloidogenesis is helpful for rational designing and developing new anti-AD drugs and therapeutic strategies. Dihydromyricetin, a
OBJECTIVE
We have evaluated the direct effect of ampelopsis (APS) on duck hepatitis B virus (DHBV) replication in ducklings in vivo.
METHODS
One-day-old ducklings were infected with DHBV. After infection for 7 days, the animals were treated with APS at dosages of 70, 150, 300 mg x kg(-1) of body
Numerous patients with osteosarcoma either are not sensitive to chemotherapy or develop drug resistance to current chemotherapy regimens. Therefore, it is necessary to develop several potentially useful therapeutic agents. Dihydromyricetin is the major flavonoid component derived from Ampelopsis
OBJECTIVE
To investigate the protective effects of Ampelopsis grossedentata (AMP) on dextran sulfate sodium (DSS)-induced colitis in mice based on systems pharmacology approach.
METHODS
Systems pharmacology approach was used to predict the active ingredients, candidate targets and the efficacy of
Ampelopsin (AMP), a major bioactive constituent of Ampelopsis grossedentata, exerts a number of biological effects. In this study, we investigated its anti-cancer activity in human breast cancer cell lines, and explored the underlying mechanism of this action. Our results showed that treatment with
Dihydromyricetin (DHM), a flavanonol compound in Ampelopsis grossedentata, possesses several biological activities. However, the molecular mechanism underlying the effects of DHM on human proliferative vitreoretinopathy (PVR) remains unclear. We explored the effects of DHM on cell migration and the
Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in
Dihydromyricetin (DMY or DHM), also known as ampelopsin, is the main natural flavonol compound extracted from the plant Ampelopsis grossedentata (Hand. -Mazz) W.T. Wang. In recent years, accumulating studies have been conducted to explore the extensive biological functions of DMY, including
OBJECTIVE
Skeletal muscle atrophy is an important health issue and can impose tremendous economic burdens on healthcare systems. Glucocorticoids (GCs) are well-known factors that result in muscle atrophy observed in numerous pathological conditions. Therefore, the development of effective and safe
OBJECTIVE
It is general believed that mitochondrial dysfunction and oxidative stress play critical roles in the pathology of Parkinson's disease (PD). Dihydromyricetin (DHM), a natural flavonoid extracted from Ampelopsis grossedentata, has recently been found to elicit potent anti-oxidative effects.
Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer with a high mortality rate and still remains a therapeutic challenge. A strategy for targeting NSCLC is to identify agents that are effective against NSCLC cells while sparing normal cells. Dihydromyricetin (DHM) is the major
Ampelopsis grossedentata, a medicinal and edible plant, has been widely used in China for hundreds of years, and dihydromyricetin is the main active ingredient responsible for its various biological actions. We investigated the effects of dihydromyricetin on glucose and lipid metabolism,
The underlying molecular mechanisms for aging-related neurodegenerative diseases such as Alzheimer's disease (AD) are not fully understood. Currently, growing evidences have revealed that microRNAs (miRNAs) are involved in aging and aging-related diseases. The up-regulation of miR-34a has been