14 resultados
The expression, during flower development, of the gene encoding the anthocyanin pathway key enzyme dihydroflavonol 4-reductase (DFR) was investigated in floral organs of Forsythia x intermedia cv. 'Spring Glory'. Full-length DFR and partial chalcone synthase (CHS) cDNAs, the gene of interest and a
Condensed tannins (proanthocyanidins) are an important factor in the nutritive and dietary quality of many forage crops. We report here experiments aimed at altering the levels and monomer composition of condensed tannins (CTs) in 'hairy root' cultures of Lotus corniculatus (bird's foot trefoil)
We have produced and analyzed transgenic birdsfoot trefoil (Lotus corniculatus L.) plants harboring antisense dihydroflavonol reductase (AS-DFR) sequences. In initial experiments the effect of introducing three different antisense Antirrhinum majus L. DFR constructs into a single recipient genotype
An antisense dihydroflavonol reductase (DFR) gene-construct made using the cDNA for DFR from Antirrhinum majus was introduced into the genome of a series of clonal genotypes of Lotus corniculatus via Agrobacterium rhizogenes. After initial screening, 17 antisense and 11 control transformation events
A barley (cv Triumph) cDNA library was screened with a cDNA probe encoding flavanone-3-hydroxylase of Antirrhinum majus. A full-length clone coding for a protein of 377 amino acids (42 kDa), with an overall homology of 71% and a central domain homology of 85% to the Antirrhinum protein, was
A full-length cDNA clone encoding barley dihydroflavonol-4-reductase was isolated from a kernel-specific cDNA library by screening with the cDNA of the structural gene (A1) for this enzyme from maize. Subsequently, the gene corresponding to the barley dihydroflavonol-4-reductase cDNA was cloned and
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5 kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with
A cDNA clone (DFR) encoding dihydroflavonol 4-reductase was identified from tomato hypocotyls. Nucleotide and amino acid sequence comparisons to Petunia hybrida, Antirrhinum majus and Zea mays DFR sequences confirmed that the cDNA encodes the structural DFR gene. In tomato, the DFR sequence appeared
To identify transposons that may be of use for mutagenesis we investigated the genetic molecular basis of a case of flower colour variegation in Linaria, a close relative of the model species Antirrhinum majus. We show that this variegation is attributable to an unstable mutant allele of the gene
A full-length sense Antirrhinum majus dihydroflavonol reductase (DFR) sequence was introduced into birdsfoot trefoil (Lotus corniculatus L.) in experiments aimed at modifying condensed tannin content and polymer hydroxylation in a predictable manner. Analysis of transgenic plants indicated lines
The synthesis of anthocyanins in higher plants involves many enzymatic steps. Here we describe the isolation and characterization of a cDNA, ant17, which encodes a protein that has 73% amino acid sequence identity with the candi gene product of Antirrhinum majus and 48% with that of the maize a2
Genes involved in flavonoid and stilbene biosynthesis were isolated from grape (Vitis vinifera L.). Clones coding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase
CONCLUSIONS
A basic helix-loop-helix (bHLH) transcription factor gene from Antirrhinum, AmDEL , increases flavonoids accumulation and enhances salt and drought tolerance via up-regulating flavonoid biosynthesis, proline biosynthesis and ROS scavenging genes in transgenic Arabidopsis. In plants,
Myc-RP from Perilla frutescens and Delila from Antirrhinum majus, two plant basic helix-loop-helix transcription factors (bHLH TFs) involved in the flavonoid biosynthetic pathway, have been used for the improvement of transactivational properties by directed evolution. Through two rounds of DNA