Página 1 a partir de 59 resultados
Introduction of agrochemicals (fungicides) into soil may have lasting effects on soil microbial activities and thus affect soil health. In order to determine the changes in microbial activity in a black clay and red sandy loam soils of groundnut (Arachis hypogaea L.) cultivated fields, a case study
Field experiments were conducted in 2000 and 2001 on Georgia Green, Florida MDR-98, and C-99R peanut (Arachis hypogaea) cultivars in Tifton, GA, to determine the effects of tillage practices on early leaf spot (Cercospora arachidicola) epidemics under standard fungicide regimes and fungicide regimes
Contamination of preharvest and stored peanuts (Arachis hypogaea L.) by aflatoxigenic strains of Aspergillus flavus is an important economical and food safety problem in many tropical and subtropical areas of the world. The present investigation reports the antifungal activity of a
The efficacy of chemical control of stem rot (caused by Sclerotium rolfsii) of peanut (Arachis hypogaea) relies partially on increasing deposition and residual activity in the lower canopy. Tebuconazole (0.21 kg a.i./ha, four applications) and azoxystrobin (0.31 kg a.i./ha, two applications) were
Chemical control of soilborne peanut (Arachis hypogaea) diseases requires deposition of fungicide on plant tissues near the soil. Four applications of a protectant fungicide, chlorothalonil (1.26 kg a.i./ha), or a systemic, azoxystrobin (0.21 kg a.i./ha), pyraclostrobin (0.21 kg a.i./ha), or
BACKGROUND
Management of early leaf spot (Cercospora arachidicola Hori.), late leaf spot [Cercosporidium personatum (Berk. & MA Curtis) Deighton] and stem rot (Sclerotium rolfsii Sacc.) of peanut (Arachis hypogaea L.) in the southeastern USA is heavily dependent upon sterol biosynthesis inhibitor
To better understand movement of systemic fungicides in peanut (Arachis hypogaea), three terminal, fully expanded leaves of primary lateral branches of 'Tifrunner' peanut were treated with prothioconazole + tebuconazole (Provost, 0.29 kg a.i./ha), azoxystrobin (Abound, 0.31 kg a.i./ha), or
Recent registration of sterol biosynthesis inhibitor and strobilurin fungicides for control of early (Cercospora arachidicola) and late (Cercosporidium personatum) leaf spot diseases of peanut (Arachis hypogaea) has renewed interest in the potential for loss of disease control due to fungicide
Peanut (Arachis hypogaea L) producers rely on costly fungicide programs to manage stem rot, caused by Sclerotium rolfsii. Planting disease-resistant cultivars could increase profits by allowing for the deployment of less-expensive, lower-input fungicide programs. Field experiments were
Peanut (Arachis hypogaea) is produced intensively in the southern Atlantic Coastal Plain of the eastern USA. To effectively protect the region's water quality data are needed which quantify runoff of pesticides used to protect these crops. Fungicides are used intensively yet there is little
Fungicides not reaching target organisms result in decreased disease control. In the southeastern United States, foliar-applied fungicides are routinely used to manage peanut (Arachis hypogaea) diseases. Irrigation is often applied to wash fungicides from treated foliage to obtain maximum control of
Peanut (Arachis hypogaea) cultivars with resistance or tolerance to Cercospora arachidicola and/or Cercosporidium personatum, the causes of early and late leaf spot, respectively, are needed for organic production in the southeastern U.S. To determine the potential of new breeding lines for use in
Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time,
A pathogenesis related protein (AhPR10) is identified from a clone of 6-day old Arachis hypogaea L. (peanut) cDNA library. The clone expressed as a approximately 20 kDa protein in E. coli. Nucleotide sequence derived amino acid sequence of the coding region shows its homology with PR10 proteins
BACKGROUND
Despite strong indirect evidence of post-infection activity by a selection of systemic fungicides against Cercospora arachidicola, the causal organism of early leaf spot of peanut, direct post-infection activities in this pathosystem have yet to be reported in detail. This study was