Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

carboxylic acid/nicotiana

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
Página 1 a partir de 59 resultados
A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA),
The mechanism of light-inhibited ethylene production in excised rice (Oryza sativa L.) and tobacco (Nicotiana tabacum L.) leaves was examined. In segments of rice leaves light substantially inhibited the endogenous ethylene production, but when CO2 was added into the incubation flask, the rate of

The effect of light on the production of ethylene from 1-aminocyclopropane-1-carboxylic acid by leaves.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
White light inhibits the conversion of 1-amino-cyclopropane-1-carboxylic acid (ACC) in discs of green leaves of tobacco (Nicotiana tabacum L.) and segments of oat (Avena sativa L.) leaves by from 60 to 90%. Etiolated oat leaves do not show this effect. The general nature of the effect is shown by
Since 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the major conjugate of 1-aminocyclopropane-1-carboxylic acid (ACC) in plant tissues, is a poor ethylene producer, it is generally thought that MACC is a biologically inactive end product of ACC. In the present study we have shown that the

1-aminocyclopropane-1-carboxylic Acid concentrations in shoot-forming and non-shoot-forming tobacco callus cultures.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Shoot-forming tobacco (Nicotiana tabacum var. Wisconsin 38) callus tissues contain significantly lower concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid compared to non-shoot-forming callus tissues. This difference is evident 1 day after subculture to shoot-forming or

Galactose inhibits the conversion of 1-aminocyclopropane-1-carboxylic Acid to ethylene in aged tobacco leaf discs.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
d-Galactose has been shown to have toxic and growth inhibitory effects in plants. When applied at levels of 50 millimolar to tobacco (Nicotiana tabacum L. cv Xanthi) leaf discs galactose caused a rapid increase in ethylene production during the first 2 days of incubation, followed by a rapid return
Mitogen-activated protein kinases (MAPKs) are implicated in regulating plant growth, development, and response to the environment. However, the underlying mechanisms are unknown because of the lack of information about their substrates. Using a conditional gain-of-function transgenic system, we
Xylanase (EIX) from the fungus Trichoderma viride elicits ethylene biosynthesis in leaf tissues of Nicotiana tabacum cv Xanthi but not in cv Hicks. The increase in ethylene biosynthesis is accompanied by an accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), an increase in extractable ACC

Production of Putative Diterpene Carboxylic Acid Intermediates of Triptolide in Yeast.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The development of medical applications exploiting the broad bioactivities of the diterpene therapeutic triptolide from Tripterygium wilfordii is limited by low extraction yields from the native plant. Furthermore, the extraordinarily high structural complexity prevents an economically attractive
The hormone ethylene influences plant growth, development, and some defense responses. The fungal elicitor Ethylene-Inducing Xylanase (EIX) elicits ethylene biosynthesis in tomato (Lycopersicon esculentum) and tobacco (Nicotiana tabacum) leaves by induction of 1-aminocyclopropane-1-caboxylic acid

Mutants of Nicotiana plumbaginifolia with specific resistance to auxin.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
We have isolated nine independent auxin-resistant mutants of Nicotiana plumbaginifolia by culturing M2 seedlings in the presence of indole-3-acetic acid ethyl ester or 1-naphthaleneacetic acid at concentrations which significantly inhibit hypocotyl elongation of the wild type. The mutations were

Biological activity of reducing-end-derivatized oligogalacturonides in tobacco tissue cultures.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
The biological activity of reducing-end-modified oligogalacturonides was quantified in four tobacco (Nicotiana tabacum) tissue culture bioassays. The derivatives used were oligogalacturonides with the C-1 of their reducing end (a) covalently linked to a biotin hydrazide, (b) covalently linked to

Carbon dioxide enhances the development of the ethylene forming enzyme in tobacco leaf discs.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Since CO(2) is known to stimulate ethylene production by promoting the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, the effect of CO(2) on the activity and the development of the ethylene forming enzyme (EFE) was studied in tobacco (Nicotiana tabacum L. cv Havana 425 and
Using an open air flow system, differences in the yellowing rate of leaves during curing were assessed in relation to ethylene production by shoots of intact seedlings or attached mature leaves of 60 day old tobacco (Nicotiana tabacum L.) plants. The rate of ethylene evolution from the leaves of the
Galactose, sucrose, and glucose (50 millimolar) applied to tobacco leaf discs (Nicotiana tabacum L. cv ;Xanthi') during a prolonged incubation (5-6 d) markedly stimulated ethylene production which, in turn, could be inhibited by aminoethoxyvinylglycine (2-amino-4-(2'-aminoethoxy)-trans-3-butenoic
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge