Portuguese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

eucalyptus laevopinea/cancro da mama

O link é salvo na área de transferência
ArtigosTestes clínicosPatentes
5 resultados
To develop and validate an interpretable and repeatable machine learning model approach to predict molecular subtypes of breast cancer from clinical metainformation together with mammography and MRI images.We retrospectively assessed 363 breast cancer cases
In this work, untargeted metabolomics was used to unveil the impact of a Eucalyptus (E. nitens) lipophilic outer bark extract on the metabolism of triple negative breast cancer (TNBC) and non-tumour breast cells. Integrative analysis of culture medium, intracellular polar metabolites and cellular

White box radial basis function classifiers with component selection for clinical prediction models.

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
OBJECTIVE To propose a new flexible and sparse classifier that results in interpretable decision support systems. METHODS Support vector machines (SVMs) for classification are very powerful methods to obtain classifiers for complex problems. Although the performance of these methods is consistently
Background: Lung and breast cancers are common in the world and represent major public health problems. Systemic chemotherapy is an effective way to prolong survival but it is associated with side effects. Plants are used as traditional treatments for many types of cancers, mostly in

White learning methodology: A case study of cancer-related disease factors analysis in real-time PACS environment

Apenas usuários registrados podem traduzir artigos
Entrar Inscrever-se
Background and objective: Bayesian network is a probabilistic model of which the prediction accuracy may not be one of the highest in the machine learning family. Deep learning (DL) on the other hand possess of higher predictive power
Junte-se à nossa
página do facebook

O mais completo banco de dados de ervas medicinais apoiado pela ciência

  • Funciona em 55 idiomas
  • Curas herbais apoiadas pela ciência
  • Reconhecimento de ervas por imagem
  • Mapa GPS interativo - marcar ervas no local (em breve)
  • Leia publicações científicas relacionadas à sua pesquisa
  • Pesquise ervas medicinais por seus efeitos
  • Organize seus interesses e mantenha-se atualizado com as notícias de pesquisa, testes clínicos e patentes

Digite um sintoma ou doença e leia sobre ervas que podem ajudar, digite uma erva e veja as doenças e sintomas contra os quais ela é usada.
* Todas as informações são baseadas em pesquisas científicas publicadas

Google Play badgeApp Store badge